	APPENDIX A TRAFFIC STUDY		
-	TRAFFIC STUDY		

TRAFFIC STUDY

For

GREGORY CANYON LANDFILL

in the County of San Diego

Submitted By:

Darnell & Associates, Inc.

Revised March 21, 2007 (Previous February 21, 2007) (Previous June 16, 2006)

TRAFFIC STUDY

FOR

GREGORY CANYON LANDFILL

in the County of San Diego

Submitted By:

Darnell & Associates, Inc. 1446 Front Street, Third Floor San Diego, CA 92101-3425 619-233-9373

Revised March 21, 2007 (Revised February 21, 2007) (Previous June 16, 2006) 051008-GregoryCanyon-03-21-07

TABLE OF CONTENTS

EXECUTIVE SUMMARY	I
SECTION I - INTRODUCTION & METHODOLOGIES	2
PURPOSE OF STUDY	
PROJECT DESCRIPTION	
CONGESTION MANAGEMENT PROGRAM	
SCENARIOS STUDIED	
LEVEL OF SERVICE	
ANALYSIS METHODOLOGY	
ORGANIZATION OF REPORT	
SECTION II - EXISTING CONDITIONS	8
ROADWAY CHARACTERISTICS	8
PASSENGER CAR EQUIVALENT	8
KEY INTERSECTIONS	10
EXISTING ROAD SURFACE CONDITIONS	
ACCIDENT REPORT FOR SR-76	
UPDATED ACCIDENT REPORT	
EXISTING CONDITIONS LEVEL OF SERVICE	
SECTION III - TRIP GENERATION & ASSIGNMENT, CUMULATIVE TRAFFIC	22
PROJECT TRIP GENERATION & ASSIGNMENT, CUMULATIVE TRAFFIC	
PROJECT TRIP DISTRIBUTION	
CUMULATIVE PROJECT TRAFFIC	
NEAR TERM CUMULATIVE TRAFFIC	
NEAR TERM COMOLATIVE TRAITIC	
SECTION IV - IMPACTS	34
PUBLIC FACILITIES ELEMENT IN COUNTY	34
CUMULATIVE IMPACTS	
LEVELS OF SIGNIFICANCE STANDARDS	35
EXISTING PLUS PROJECT CONDITIONS	
NEAR TERM CUMULATIVE CONDITIONS	43
YEAR 2030 TRAFFIC CONDITIONS	
TRAFFIC NEEDS ASSESSMENT STUDY	58
SECTION V - ACCESS, INTERNAL CIRCULATION, OFF-SITE CIRCULATION	63
PROJECT ACCESSPROJECT ACCESS	
INTERNAL CIRCULATION	
OFF-SITE CIRCULATION	
MARANATHA SCHOOL	
CITY OF SAN DIEGO ANALYSIS SCOPE	
EXISTING AND BUILDOUT CONDITIONS	
LAISTING AND BUILDOUT CONDITIONS	07
SECTION VI - TRAFFIC DESIGN FEATURES & MITIGATION MEASURES	
CUMULATIVE IMPACTS	72
SECTION VII - SUMMARY OF FINDINGS & CONCLUSIONS	73

LIST OF FIGURES

Figure 1 - Vicinity Map	4
Figure 1 - Vicinity MapFigure 2 - Site Plan	5
Figure 3 - Existing Conditions	9
Figure 4 – Existing Traffic Volumes	
Figure 5 - Project Distribution	27
Figure 6 - Project Traffic	
Figure 7 - Existing Plus Project Traffic	
Figure 8 - Near Term (no project)	
Figure 9 - Near Term (with project)	33
Figure 10 - ILV SR-76/Highway 395	49
Figure 11 - ILV SR-76/Interstate 15 Southbound	50
Figure 12 - ILV SR-76/Interstate 15 Northbound	51
Figure 13 - ILV Mitigated SR-76/I-15 Northbound	52
Figure 14 - Year 2030 without project	53
Figure 15 - Year 2030 with project	54
Figure 16 - ILV SR-76/Old Highway 395	59
Figure 17 - ILV SR-76/I-15 Southbound	60
Figure 18 - ILV SR-76/I-15 Southbound	61
Figure 19 - Regional Location Map	66
Figure 19A - Aerial of Reservior Site	

LIST OF TABLES

Table 1 - HCM Rural Highway PCE Conversion	11
Table 2 - Accident Data Summary for State Route 76	14
Table 3 - Accident Summary Review	
Table 4 - Summary of Speeds Within Curves	16
Table 5 - Comparison of Accident Data	17
Table 6 - Summary of Existing Peak Hour Volumes on State Route 76	
Table 7 - Existing Intersection Level of Service Summary	
Table 8 - Summary of Existing Intersection Operation	
Table 9 - Summary of Existing Ramp Operation	
Table 10 - Existing Freeway Segment Level of Service	21
Table 11 - Summary of Trip Gregory Canyon Trip Generation	
Table 12 - Measures of Significant Impacts	
Table 13 - Existing Plus Project Intersection Level of Service Summary	37
Table 14 - Summary of Peak Hour Volumes on State Route 76	
Table 15 - Summary of Peak Hour Volumes on State Route 76	
Table 16 - Summary of Existing Plus Project Ramp Operation	41
Table 17 - Existing Plus Project Freeway Segment Level of Service	42
Table 18 - Summary of Existing Plus Project Intersection Operation	43
Table 19 - Near Term Cumulative Intersection Level of Service Summary	44
Table 20 - Summary of Peak Hour Volumes on State Route 76	
Table 21 - Summary of Near Term Cumulative Ramp Operation	
Table 22 - Near Term Freeway Segment Level of Service	47
Table 23 - Summary of Near Term Cumulative Intersection Operation	
Table 24 - Year 2030 Plus Project Intersection Level of Service Summary	
Table 25 - Year 2030 Roadway Segment Level of Service Summary	
Table 26 - Summary of Year 2030 Ramp Operation	
Table 27 - Year 2030 Freeway Segment Level of Service	57
Table 28 - Summary of Year 2030 Intersection Operation	58
Table 29 - Water Route Buildout Roadway Segment Level of Service Summary	
Table 30 - Buildout Freeway Segment Level of Service	

APPENDICES

APPENDIX A
Traffic Counts
Vertical Grade Profile
Speed Surveys
Accident Reports

APPENDIX B

Excerpts from the *Public Facilities Element*Excerpts from the *County Guidelines for Determining Significance*Excerpts from Caltrans' *Guide for the Preparation of Traffic Impact Studies*

APPENDIX C
Cumulative Traffic

APPENDIX D
Existing Conditions Worksheets

APPENDIX E
Existing Plus Project Worksheets

APPENDIX F
Near Term (No Project) Worksheets

APPENDIX G
Near Term (With Project) Worksheets

APPENDIX H Year 2030 (Without Project) Worksheets

APPENDIX I Year 2030 (With Project) Worksheets

APPENDIX J
Maranatha School Traffic Study Excerpts
Traffic Signal Warrants

APPENDIX K
Conceptual Striping Plan

EXECUTIVE SUMMARY

The proposed Gregory Canyon landfill is located approximately 3.5 miles east of Interstate 15 on State Route 76. The Gregory Canyon site is planned to contain approximately 30 million tons of refuse with an operating life of about 30 years. Maximum trip generation for this site was estimated at 2,085 daily trips, which includes truck traffic converted into passenger car equivalents (PCEs).

The project access will provide for acceleration/deceleration lanes and adequate shoulders along SR-76 for approximately 1,700 feet. This improvement will also assure a minimum sight distance of 1,000 feet in both directions. Vegetation or structures will not obstruct this minimum sight distance.

An update of Accident Data was conducted and showed that while the traffic volumes have increased significantly on SR-76, accident rates per million vehicle miles traveled are consistent with previous studies. Based on the comparison of primary collision factors, the data continues to show that alcohol, driver violations, and excessive speed are the major causes of accidents on SR-76. The data does not show an increase in volumes or trucks is related to the accident rate, which is consistent with previous conclusions.

Existing conditions traffic analyses determined that all study intersections operate acceptably with traffic signals. No deficiencies at intersections were reported.

A peak hour analysis of SR-76 was conducted in accordance with Congestion Management Program (CMP) Guidelines throughout the operation of the facility from 7:00am to 6:00pm. The peak hour analysis demonstrated LOS D conditions along SR-76 from I-15 to the project site within this time frame. With the addition of project peak hour traffic determined that the project has a direct impact on SR-76 between the hours of 2pm-5pm. As mitigation for this impact, it is recommended that the project reduce its peak hour truck traffic within the hours of 2pm-5pm. This mitigation is easily monitored by the facility as it records all traffic and tonnage throughout the day.

West of Highway 395, SR-76 reports a deficiency; however, the project does not meet County significance criteria for direct impacts and is not required to perform mitigation on this segment.

Other known projects which significantly affect this corridor were identified and incorporated into the near term analysis where appropriate. Impacts at intersections due to other project traffic were identified at the SR-76/Interstate 15 Northbound Ramp. This is the result of cumulative project contributions and requires near term improvements with or without the proposed project. The project is considered to have a cumulative impact on this intersection and will participate in the County's Traffic Impact Fee (TIF) program to fully mitigate all cumulative and future circulation needs.

State Route 76 reports deficiencies with the addition of cumulative projects and the proposed project. The project will participate in the County's Traffic Impact Fee (TIF) program to fully mitigate all cumulative and future circulation needs along State Route 76.

A year 2030 traffic projection was conducted using the County of San Diego's General Plan 2020 Model, Board Alternative Map, Existing Plus CIP Network, for generating traffic volumes and based on the SANDAG Series 10 model. Analysis was conducted for a "no build" (or existing) condition. Year 2030 "no build" analyses report failing level of service on SR-76 and its intersections from Highway 395 to I-15. The project will participate in the County's Traffic Impact Fee (TIF) program to fully mitigate all cumulative and future circulation needs.

I-15 between Pomerado Road and Carmel Mountain Road reports a deficiency; however, the project does not meet significance criteria for direct impacts and is not required to perform mitigation on this segment. This deficiency will continue in the Year 2020 Buildout With and Without Project Condition; however, the project does not meet significance criteria for direct impacts and is not required to perform mitigation on this segment.

Off-site circulation analysis concluded recycled water truck trips to Olivenhain's water treatment facility can be accommodated within future conditions circulation systems and can adequately interface with the Maranatha School development, which shares an access road.

SECTION I - INTRODUCTION & METHODOLOGIES

PURPOSE OF STUDY

The final environmental impact report for the Gregory Canyon landfill was certified and approved on February 6, 2003. The adequacy of the FEIR was subsequently challenged in the case filed before the Honorable Michael Anello entitled Riverwatch v. County of San Diego Department of Environmental Health, et al.; case number GIN038227. On October 3, 2005 the Court issued a final minute order finding most of the FEIR adequate and in compliance with the California Environmental Quality Act but also noting three deficiencies. One of the deficiencies noted by the Court required the FEIR to evaluate a 2003 County tribal traffic study known as the 2003 Traffic Needs Assessment Study. The Court required this traffic study to be evaluated in conjunction with traffic studies completed for the project.

Although the judgment and writ issued by Judge Anello did not require a new traffic study, the LEA subsequently determined that a new traffic study was appropriate given changes to existing traffic conditions on area roads since the FEIR was certified in February 2003 and new pending projects having the potential to impact area roads being used for the project. In addition, the traffic study has been updated to evaluate project traffic associated with the use of recycled water being provided to the project from the Olivenhain Municipal Water District. This new traffic study examines existing conditions on area roads, project traffic impacts, and cumulative traffic impacts based upon both pending projects and year 2030 expected cumulative conditions. This traffic study also evaluates the accuracy and reliability of the 2003 Traffic Needs Assessment Study as requested by the Court in its October 3, 2005 minute order.

PROJECT DESCRIPTION

This transportation report has been prepared to evaluate the traffic related impacts of the proposed landfill in northern San Diego County. The planned landfill will be located in Gregory Canyon, approximately 3.5 miles east of Interstate 15 (I-15) on State Route 76 (SR-76). Figure 1 depicts the location of the project in a regional context. The Gregory Canyon site is planned to contain about 30 million tons of refuse with an operating life of approximately 30 years. Figure 2 depicts the proposed project site plan.

This traffic study was first undertaken by Darnell & Associates, Inc., in January, 1995, to address the impacts related to the proposed landfill. Supplemental traffic studies were completed in 1999, January 2001 and June 2002. This new traffic study was completed in June 2006 and revised in February 2007. Traffic studies for cumulative projects were obtained and updated as they were introduced into the study area. Traffic data collection was updated for each revision as previous iterations became obsolete. This revision includes the latest information reflected in cumulative projects. New traffic counts reflect 2005 data, collected in March to include school activity and typical travel behavior within the study area. The project size and capacity has generally remained constant through this process, while the California Department of Transportation (Caltrans) reviews alternative alignments for SR-76. The ultimate alignment, once selected, will not effect the conclusions and recommendations made in this report regarding traffic capacity. However, ultimate alignment may, in fact, reduce the safety concerns discussed later in this report.

CONGESTION MANAGEMENT PROGRAM

Based on the approval of Proposition 111 in 1990, regulations require the preparation, implementation and annual updating of a Congestion Management Program (CMP) in each of California's urbanized counties. In 1991, San Diego County adopted their initial CMP statutes. One required element of the CMP is a process to evaluate the transportation and traffic impacts of large projects on the regional transportation system. That process is undertaken by local agencies, project applicants and traffic

FIGURE 2 SITE PLAN

Darnell & ASSOCIATES, INC.

9

051008DD.dwg 2-21-07

consultants through a transportation impact report usually conducted as part of the CEQA project review process. Authority for local land use decisions including project approvals and any required mitigation remains the responsibility of local jurisdictions.

The criteria for which a project is subject to the regulations as set forth in the CMP are determined by the trip generation potential for the project. Currently, the threshold is 2,400 maximum daily trips (ADT) or 200 peak hour trips. The project will generate approximately 2,085 daily PCE trips with 206 morning peak hour and 247 evening peak hour trips and is therefore subject to CMP analyses. This traffic report complies with all CMP requirements in evaluating project and cumulative traffic impacts.

SR-76 and its intersections from Mission Avenue to SR-79 have been adopted in the CMP as a Regionally Significant Arterial (RSA). As such, this section of SR-76 is accountable to the CMP Standards and Regional Growth Management Strategy (RGMS) objectives for level of service (described in more detail later in this report).

SCENARIOS STUDIED

The following traffic scenarios were analyzed in this report and are identified as follows:

<u>Existing Conditions</u> refers to that condition which exists on the ground today, including existing traffic counts and existing lane configurations at intersections and on roadway segments.

<u>Existing Plus Project Conditions</u> refers to that condition which includes the project traffic added onto existing volumes. Analysis is first conducted using the existing street configurations, and mitigation is added if required.

<u>Near Term Cumulative Without Project Conditions</u> refers to that condition which includes approved/pending projects in the study area expected to produce traffic in the next three years, plus the existing traffic volumes. This scenario shows the impact without the project.

Near Term Cumulative With Project Conditions refers to that condition which includes approved/pending projects expected to produce traffic in the next three years plus the project traffic plus the existing traffic volumes. This scenario shows the impact with the project. Analysis is first conducted using the existing street configurations, and mitigation is added if required.

<u>Year 2030 With and Without Project Conditions</u> refers to year 2030 daily traffic both with and without the proposed project.

Year 2020 Buildout With and Without Project Conditions refers to the year 2020 daily traffic with and without the proposed project along Maranatha Drive, Camino del Norte/Camino del Sur, and I-15 between Pomerado Road and Carmel Mountain Road, to correspond to the maximum traffic impact arising from the Maranatha School and Church project on road and freeway segments in the vicinity of that project.

LEVEL OF SERVICE

Level of Service (LOS) is a professional industry standard by which the operating conditions of a given roadway segment or intersection are measured. Level of Service is defined on a scale of A to F; where LOS A represents the best operating conditions and LOS F represents the worst operating conditions. LOS A facilities are characterized as having free flowing traffic conditions with no restrictions on

maneuvering or operating speeds; traffic volumes are low and travel speeds are high. LOS F facilities are characterized as having forced flow with many stoppages and low operating speeds.

According to page XII-4-18 of the San Diego County General Plan *Public Facility Element*, the objective in the Transportation Section is to provide a "Level of Service C or better on County Circulation Element roads." The PFE however establishes LOS D as an off-site mitigation threshold for discretionary projects. When an existing Level of Service is already LOS D, "a LOS D may be allowed." According to the PFE, projects which significantly increase congestion on roads operating at LOS E or LOS F must provide mitigation. According to the PFE, this mitigation can consist of a fair share contribution to a program to mitigate the project's impacts.

ANALYSIS METHODOLOGY

The roadway segment daily LOS on State Route 76 was determined using the Highway Capacity Manual (HCM) Two-Lane Highway component for peak hours throughout the typical weekday. This analysis includes terrain inputs, travel speeds, pavement widths, access points, passing zones, and other factors to determine level of service more precisely than the generalized County's daily capacity thresholds.

The analysis of signalized/unsignalized intersections utilized the operational analysis procedure provided by the Highway Capacity Manual program, which is an approved County of San Diego methodology. This method defines Level of Service in terms of delay, or more specifically, average stopped delay per vehicle. Delay is a measure of driver and/or passenger discomfort, frustration, fuel consumption and lost travel time. This technique uses 1,900 vehicles per hour per lane (vphpl) as the maximum saturation volume of an intersection. This saturation volume is adjusted to account for lane width, on-street parking, pedestrians, traffic composition (i.e. percentage trucks) and shared lane movements (i.e. through and right-turn movements originating from the same lane).

For the future condition, roadway segments were analyzed by comparing the average daily traffic to the County of San Diego's roadway classifications and capacities.

ORGANIZATION OF REPORT

Following this introduction, Section II introduces the existing base condition. Section III discusses trip generation and trip distribution associated with the proposed project. Section IV provides the impact analysis of all conditions, including introduction of cumulative projects, and the year 2030 conditions. Section V discusses the access requirements and an analysis of impacts on roads and freeways in the vicinity of the Maranatha School from recycled water trips. Section VI summarizes the project's direct and cumulative impacts where applicable. Section VII provides a summary of findings and conclusions.

SECTION II - EXISTING CONDITIONS

This section of the traffic study is intended to assess the existing conditions of the roadways and intersections within the vicinity of the project to determine travel flow and/or delay difficulties, if any, that exist prior to adding the traffic generated by the proposed project. The existing conditions analysis establishes a base condition which is used to apply the other scenarios discussed in this report.

Darnell & Associates conducted a field review of the area surrounding the project. Figure 3 depicts existing roadway and intersection geometrics in the project vicinity.

ROADWAY CHARACTERISTICS

Existing Roadway Segments

State Route 76 (Pala Road) is a regional facility extending from I-5 in Oceanside to its eastern terminus at SR-79 near Lake Henshaw. East of I-15, SR-76 is a two-lane facility. In the project vicinity, SR-76 traverses along flat terrain north of the San Luis Rey River flood plain. Field investigation of the potential grades on SR-76 was undertaken from the proposed project access to Interstate 15. Tight turns in SR-76 are indicated by advisory speed limit signs. In the vicinity of the project access, SR-76 provides two 11-foot travel lanes with 5' of paved shoulder on each side divided by a painted double yellow line.

Truck percentage data was collected on SR-76 during a 24-hour period in April 1999. Trucks with 3 or more axles accounted for 24% of westbound traffic, and 18% of eastbound traffic. The combined average is 21.3% trucks. The truck volume classification counts can be found in Appendix A.

The SR-76/I-15 diamond interchange is signalized for Northbound and Southbound access to I-15, as well as at Old Highway 395. The SR-76 over-crossing is two travel lanes with a painted center median and left turn pockets at the I-15 on-ramps. Four lanes of travel are available between the southbound ramp and Old Highway 395, transitioning to one lane in each direction west of Old Highway 395.

Caltrans is currently preparing an Operational Study of SR-76 east of I-15. According to Caltrans this study will not be available until February 2007.

Highway 395 is a north south facility which runs parallel to I-15 and intersects with SR-76. Highway 395 is currently a two lane facility posted at 55 mph, separated with a painted double yellow divider.

Twenty-four hour count data were collected in March 2005. Peak hour counts on SR-76 were developed using the daily counts which are summarized by hour. Count summaries are included in Appendix A.

PASSENGER CAR EQUIVALENT

Due to the high volume of truck traffic (21% detailed above), the traffic analysis is required to include the effect of heavy vehicles onto the street system. The Gregory Canyon project will also contribute heavy truck traffic to the study facilities. The Highway Capacity Manual (HCM) is a regionally accepted manual for determining the proper methodology to assess traffic impacts. The effect of heavy trucks can be evidenced on roadways with specific grades which may cause a truck to slow down more than a passenger car. To assess the relative passenger car equivalent (PCE) of a slow moving truck on an uphill grade, the HCM provides a matrix for rural highways which utilizes both specific grade percentages and average speeds.

To estimate the vertical grade of SR-76, a level was placed on the centerline of the highway approximately 1/4-1/2 mile apart. The vertical grade profile sketch is provided in Appendix A. Along this segment, SR-76 does not exhibit or sustain grades greater than 2% and can therefore be considered a "level" roadway for the purposes of a traffic analysis.

A speed survey was conducted by D&A to establish current average speed through the state highway segments between I-15 and the project site. Four locations were surveyed, including in front of the proposed project access; east of the 20 mph curve; west of the 20 mph curve; and near Pankey Road. This selection of survey locations provides both the fastest and slowest portions of SR-76. The speed on the four segments was averaged to provide the speed variable for the PCE equivalent. The average speed on SR-76 was 37.85 mph. (Note: The variable speeds included 24.6, 33.0, 41.6, and 52.2 mph. Discounting the highest average speed and the lowest average speed from this formula, results in an average speed of 37.3 mph. This study applies the higher of the two averages.) Speed survey summaries are included in Appendix A to this report.

Table 1 details the PCE matrix as specified in the HCM Table 8-9. SR-76 is less than the minimum 3% grade, and therefore falls into the first row of Table 1. The average speed of the roadway is less than 40 miles per hour and would equate to a PCE factor of 1.3. This figure translates as one truck is equivalent to 1.3 passenger cars on this particular facility. For the purposes of the traffic analysis in this report, a PCE factor of 1.5 was applied, which is more conservative than the 1.3 PCE permitted by the HCM.

KEY INTERSECTIONS

D&A evaluated the following intersections for AM and PM peak hour level of service:

- 1. State Route 76/Highway 395 (signalized)
- 2. State Route 76/Interstate 15 North on/off (signalized)
- 3. State Route 76/Interstate 15 South on/off (signalized)

Peak hourly turning movement counts were conducted in March 2005 during typical weekdays (Tuesday through Thursday). Counts taken on Mondays and Fridays are not deemed acceptable by traffic engineers for traffic impact studies due to the variable surges of traffic which occur on these days making them unreliable predictors of daily traffic on area roadways. In addition, consideration of evening and weekend traffic would not be useful in assessing project impacts or developing traffic mitigation measures since the landfill will not be operating on Sundays or during evenings and will typically be operating on a more limited basis on Saturdays. On most Saturdays residential pickup of trash does not occur. Count summary sheets can be found in Appendix A. Figure 4 presents the existing conditions traffic volumes used in this analysis.

EXISTING ROAD SURFACE CONDITIONS

Caltrans provides regularly scheduled resurfacing and repairs to designated highways including SR 76 and I-15. No existing surface deficiencies were noted on area roadways as part of field investigations completed in conjunction with this traffic study.

RURAL HIGHWAYS

TABLE 8-9. PASSENGER-CAR EQUIVALENTS FOR SPECIFIC GRADES ON TWO-LANE RURAL HIGHWAYS, E AND E.

	LENGTH			AVERAGE UPGR	ADE SPEED (MPH)		
GRADE (%)	GRADE (MI)	55.0	52.5	50.0	45.0	40.0	30.0
0	Ali	2.1	1.8	1.6	1.4	1.3	1.3
3	% % % %	2.9 3.7 4.8	2.3 2.9 3.6	2.0 2.4 2.9	1.7 2.0 2.3	1.6 1.8 2.0	1.5
	1 1	6.5 11.2 19.8	4.6 6.6	3.5 5.1	2.6 3.4	2.3 2.9	1.9 2.1 2.5
	1½ 2 3 4	71.0	9.3 21.0 . 48.0	6.7 10.8 20.5	4.6 7.3 11.3	3.7 5.6 7.7	2.9 3.8 4.9
4	Х Х Х	3.2 4.4	2.5 3.4	2.2 2.8	1.8 2.2	1.7 2.0	1.6 1.9
	1 1/2	6.3 9.6 19.5	4.4 6.3 10.3	3.5 4.5 7.4	2.7 3.2 4.7	2.3 2.7 3.8	2.1 2.4 3.1
	2 3 4	43.0	16.1 48.0	10.8 20.0 51.0	6.9 12.5 22.8	5.3 9.0 13.8	3.8 5.5 7.4
5 .	. <u>//</u>	3.6 5.4	2.8	2.3 3.2	2.0 2.5	1.8 2.2	1.7
	/4 // // // //	8.3 14.1	5.7 8.4	4.3 5.9	3.1 4.0	2.7	2.4 2.8
,	1½ 2 3	34.0 91.0	16.0 28.3	10.8 17.4 37.0	6.3 10.2 22.0	4.9 7.5 14.6	3.8 4.8 7.8
	4				55.0	25.0	11.5
6	1/2 1/2 2/2 3/4 1	4.0 6.5	3.1 4.8	2.5 3.7	2.1 2.8	1.9 2.4	1.8 2.2
	% 1 1½ 2	11.0 20.4 60.0	7.2 11.7 25.2	7.8 16.0	3.7 4.9 8.5	3.1 4.0 6.4	2.7 3.3 4.7
	2 3 4		50.0	28.2 70.0	15.3 38.0 90.0	10.7 23.9 45.0	6.3 11.3 18.1
7	<u>%</u>	4.5 7.9	3.4	2.7	2.2	2.0	1.9
	/4 // // // 1	7.9 14.5 31.4	5.7 9.1 16.0	4.2 6.3 10.0	3.2 4.3 6.1	2.7 3.6 4.8	2.4 3.0 3.8
	1½ 2 3		39.5 88.0	23.5 46.0	11.5 22.8 66.0	8.4 15.4 38.5	5.8 8.2 16.1
	4					36.3 a	28.0

^{*} Speed not attainable on grade specified.

is selected from Table 8-2, and appropriate adjustment factors are selected for use in Eq. 8-3.

The service flow rate at capacity, i.e., SF_E , is not as easily determined, because the speed at which it occurs varies depending on the percent and length of the grade in question. For the normal range of grades, i.e., 3 to 7 percent up to 4 miles long, capacity may occur at speeds ranging from 25 to 40 mph. The speed at which capacity occurs is related to the flow rate at capacity by the following equation:

$$S_c = 25 + 3.75(v_c/1000)^2$$
 (8-8)

where:

 S_c = speed at which capacity occurs, in mph; and

 v_c = flow rate at capacity, in mixed vph.

For convenience, the equation predicts *upgrade* speeds based on total two-way flow rates. The equation is valid for speed up to 40 mph.

If the service flow rates computed for various speeds using Eq. 8-3 and the capacity speed vs. capacity flow rate relationship (8-8) of Eq. 8-8 are plotted, the two curves will intersect. The inter-

NOTE: Round "Percent Grade" to next higher integer value.

ACCIDENT REPORT FOR SR-76

Accident reports were requested from Caltrans for three segments of SR-76:

- 1. I-15 (P.M.17.169) to Pankey Road (P.M.17.866);
- 2. Pankey Road (P.M. 17.866 to P.M. 18.939) west of Couser Canyon; and
- 3. West of Couser Canyon Road (P.M.18.94) to east of the Project Access (P.M.21.440).

The accident reports covered seven (7) years from 1991 to 1998. Caltrans uses the TASAS software to report/identify accidents. The Caltrans accident reports are contained in Appendix A. Table 2 summarizes the accident data on SR-76 from 1991 through 1998 for the above segments. Table 2 also compares the street segment (actual) to the statewide (average) for each segment within the study.

Location 1 has an accident average of 4.63 accidents per million vehicle miles (MVM). The state average is 1.46 per MVM. Location 1 is nearest the I-15 freeway ramps and the straighter segment of SR-76. No fatalities were identified during the seven year period for this segment.

Location 2 has an average of 2.07 accidents per MVM compared to the statewide average of 1.47. Location 2 identified one fatality in 1991, which included Pankey Road to west of Couser Canyon.

Location 3 has an average of 2.56 accidents per MVM compared to the state average of 1.48. Two fatalities were identified on this segment over the seven year period, which includes the segment of Couser Canyon east to the project site.

It has been postulated that an increase in traffic volumes will raise the number of accidents on a road segment. The accident summary in Table 2 does show that statistically SR-76 between I-15 and the project has an accident rate higher than the statewide average per million vehicle miles traveled. However, our research has revealed no direct or indirect statistical relationship between traffic volumes and the number of accidents on this portion of Highway 76.

Table 2 presents Caltrans accident data and Caltrans annual traffic count data from District 11. The table shows no annual trend of rising numbers of accidents corresponding to annual increases daily traffic volumes. The table shows both the total number of accidents and the traffic volumes varying from year to year. The table also shows that even with stable daily volumes on the three segments (Locations 1-3), the number of accidents varies between each segment. The only measurable effect of adding project traffic to the three segments of SR-76 between the project and I-15 is to increase the total daily trips and the annual vehicle miles traveled on these segments.

What Table 2 does show is that factors other than traffic volumes must be the denominator of the higher than average accident rate on these segments of SR-76. In discussions with state and local authorities we learned that accidents are a function of variable causes which predominately include: driver behavior (experience, carelessness, and excessive speed), weather conditions, and time of day, visibility, and roadway conditions. With the exception of existing roadway conditions, none of these variable causes is within the influence of the project.

As shown, accident summaries were obtained through Caltrans TASAS records for years 1991-1998 for three postmile segments on SR-76 from Interstate 15 to east of the project. A new TASAS run was completed in February 2002 for 1999-2001.

Table 2 - Accident Data Summary for State Route 76										
						Accide	nt Rate	s/MVM		
	Number of Accidents					Actual*		Statewide Avg*		
Location 1 (a)	Tot	F	I	F+I	Tot	F	F+I_	Tot	F	F+I
1991	1	0	1	1	0.57	0	0.57	1.46	0	0.77
1992	6	0	5	5	3.38	0	2.82	1.46	0	0.77
1993	12	0	7	7	6.78	0	3.96	1.46	0	0.76
1994	13	0	7	7	7.35	0	3.96	1.46	0	0.77
1995	11	0	4	4	6.25	0	2.27	1.46	0	0.77
1996	6	0	5	5	3.34	0	2.78	1.46_	0	0.77
1997	_ 11	0	5	5	6.43	0	2.92	1.46	0	0.77
1998	5	0	1	1	2.92	0	0.58	1.46	0	0.77
1991-1998	65	0	35	35	4.63	0	2.49	1.46	0	0.77
Location 2 (b)	Tot	F	I	F+I	Tot	F	F+I	Tot	F	F+I
1991	7	1	4	5	3.76	0.537	2.68	1.47	0	0.77
1992	1	0	1	1	0.54	0	0.54	1.47	0	0.77
1993	3	0	2	2	1.61	0	1.07	1.47	0	0.76
1994	1	0	1	1	0.54	0	0.54	1.47	0	0.77
1995	3	0	2_	2	1.61	0	1.07	1.47	0	0.77
1996	9	0	3	3	4.82	0	1.61	1.47	0	0.77
1997	7	0	2	2	4.2	0	1.2	1.48	0	0.78
1998	0	0_	0	0	0	0	0	1.46	0	0.77
1991-1998	31_	1	15	16	2.07	0.07	1.07	1.47	0	0.77
Location 3 (c)	Tot	F	I	F+I	Tot	F	F+I	Tot	F	F+I
1991	7	0	5	5	1.6	0	1.14	1.47	0	0.77
1992	7	0	5	5	1.59	0	1.14	1.47	0	0.77
1993	10	0	7	7	2.28	0	1.6	1.47	0	0.77
1994	9	0	5_	5	2.05	0	1.14	1.47	0	0.77
1995	13	1	8	9	3	0.231	2.08	1.47	0	0.77
1996	8	0	4	4	1.84	0	0.92	1.47	0	0.77
1997	19	1	7	8	4.9	0.258	2.06	1.48	0	0.78
1998	14	0	2	2	3.61	0	0.52	1.48	0	0.78
1991-1998	87	2	43	45	2.56	0.06	1.33	1.48	0	0.77

⁽a) Location 1: PM 17.169-PM 17.866 (I-15 SB Ramp to Pankey Road)

Source: TASAS report prepared 4/19/99

⁽b) Location 2: PM 17.866-PM 18.939 (Pankey Road to west of Couser Canyon)

⁽c) Location 3: PM 18.94-PM 21.440 (west of Couser Canyon to east of Gregory Cyn driveway)

MVM=Million Vehicle Miles; F=Fatalities; I=Injuries; Tot=Total

^{*}Calculations performed by TASAS output, no manual adjustments were made

The 1999 study summarized the data from 1991-1998 in terms of number of accidents, fatalities and injuries, and compared it to statewide averages. For the purpose of this summary, the intent is to demonstrate an increase in traffic flow over the years has not increased the rate of incidents, nor does the design of the roadway have a significant influence on traffic accidents on SR-76. The complete printout of the 2002 accident summary segment is attached to this report.

Table 3 summarizes the accident data review. As shown in the top part of Table 3, total accidents were compared for the most recent three years (from the 2002 TASAS report) to the previous three years (from the 1999 TASAS report). (Note: the 2002 report includes data only through July 2001). The total accident difference is 23 fewer accidents in the recent three years. Although the traffic volume difference from 1996 to year 2001 has increased significantly (over 150 percent), the numbers of accidents have not.

The middle portion of the table shows accidents by vehicle type. Heavy truck traffic is involved 19.82% of the accidents for the entire length of the highway (111 accidents divided by 22 heavy trucks), with the worst-case incident rate of 23.37% for the easterly segment. These rates involving heavy trucks are similar to the truck traffic percentages on SR-76 established at approximately 21.3%.

The lower portion of the table identifies accidents by primary collision factor for the last three years. As shown with this comparison, nearly 90% of all accidents are caused by alcohol, speeding, and other traffic violations. There is no evidence based on traffic accident records that the design of the roadway or existence of trucks contributes to traffic accidents on SR-76.

To demonstrate the effects of the tight curves, additional speed surveys and observations were conducted, we at the two tight curves, the first posted with cautionary signs for 20 mph (considered the "hair-pin" turn) and the other posted at 25 mph (at Rice Canyon Road). We conducted additional speeds surveys through these curves to determine the difference between truck travel speeds and vehicular travel speeds. Speed surveys were taken at a point within each curve to demonstrate the approximate speed of vehicles traveling through the apex.

Trucks are able to safely navigate the curves while maintaining a similar speed with standard vehicles through these two curves. Table 4 summarizes the speed results within the two curves:

Eastbound trucks in the 25 mph curve (inside lane) had predominate speeds above the posted cautionary sign due to the super-elevation of the pavement. This was also observed for the westbound trucks within the 20 mph curve (inside lane). Trucks were observed to travel slower through the westbound 25 mph curve (outside lane) where the pavement is less elevated, but were still able to maintain a speed similar to standard vehicles and safely travel within the painted median.

Oceanside Waste Management provided two trucks for practical observations. An 8-ton hauling truck and a 24-ton transfer truck were brought into the field and tested both directions through the two curves. Cameras were posted at each curve to physically demonstrate the truck's ability to safely navigate within the painted medians. Reprinted photographs are provided in the appendices.

Field reviews noted other large trucks, including sand hauling vehicles which were similar in length to transfer trucks. The sand trucks had no difficulty in maintaining speeds through the curves without crossing the painted median. Based on our field observations at these two curves and the results of the speed survey analysis, no significant difference exists in truck speeds versus car speed through the tight curves.

T	able 3 - Accident S	ummary Review			
Total Number of Accidents					
Year	I-15 SB/Pankey	Pankey/Couser	Couser/East of Projec		
1996	0	5	2		
1997	5	7	18		
1998	2	0	16		
3 YEAR TOTAL	7	12	36		
1999	0	5	8		
2000	2	3	16		
2001	0	5	17		
3 YEAR TOTAL	2	13	41		
TOTAL ACCIDENTS	9	25	77		
ACCIDENTS BY VEHICLE T	YPE (1996-2001)				
Passenger Car	6	15	35		
Motorcycle	0	2	13		
Pickup Truck/Panel	4	9	25		
Heavy Trucks/Trailer	1	3	18		
Emergency Vehicle	1	2	2		
School Bus	0	0	1		
Other Bus	0	0	1		
Spilled Load	0	0	1		
TOTAL VEHICLES	12	31	96		
Heavy Trucks in Mix	8.33%	9.68%	18.75%		
Heavy Trucks in Accidents	11.11%	12.00%	23.37%		
Total Heavy True	cks in Accidents (All Se	egments Combined)	19.82%		
PRIMARY COLLISION FACT	OR (1996-2001)				
Alcohol	0%	12%	17%		
Speeding	44%	24%	29%		
Other Traffic Violation	44%	60%	52%		
Other Than Driver	11%	0%	2%		
Fell Asleep	0%	4%	0%		
Note: Vehicles may exceed accid			U70		

		Westbou	nd Vehicles			Eastbound	d Vehicles	
Location	Tı	rucks	C	Cars		Trucks		ars
Location	Vol.	Avg MPH	Vol.	Avg. MPH	Vol.	Avg MPH	Vol.	Avg MPH
SR-76 at 20 mph curve	14	23.2	29	28.2	17	26.8	46	32.5
Difference: Trucks vs. Cars				5.0				5.7
SR-76 at 25 mph curve	23	21.4	37	27.2	20	30.8	42	32.2
Difference: Trucks vs. Cars				5.8				1.4

²⁵ mph curve has super-elevation for eastbound traffic

UPDATED ACCIDENT REPORT

A summary of accident data for the years 2003 through 2005 was provided by the California Department of Transportation (Caltrans) for State Route 76 between Interstate 15 and the proposed project. This data is compared to the accident rate data provided from previous years.

Table 5 summarizes the results of the accident rate comparison. Note that the traffic volumes have increased from approximately 5,700 daily trips in 1998 to 13,300 daily trips in 2005.

As shown on Table 5, the actual fatality rate on SR-76 is less than the statewide average over the most recent three years and less than the rates identified from 1991-2001. The combined fatality plus injury rate is slightly higher than the statewide average, but less than reported in 1991-2001 (however, the most recent data is 0.38 above the statewide average, while 1991-2001 is 0.30 above the statewide average). Finally, the total rate of 1.81 for recent years is 0.48 higher than the statewide average, yet this margin is less than the 0.60 difference reported in 1991-1998.

Table 5 also demonstrates the statewide averages for overall accident rates per million vehicle miles is 0.14 less than it was in 1991-1998 (1.47 versus 1.33) although the average daily traffic has more than doubled.

The TASAS (currently TSN) report delineated primary accident factors for the 71 accidents reported during the three recent year period. Approximately 24% of the accidents were alcohol related; approximately 70% were caused by illegal driver violations (i.e., following too closely, failure to yield, improper turn, speeding, and other violations); 3% were determined to be caused by "other than driver" which may or may not be related to highway conditions; 1% attributable to driver falling asleep; and approximately 1% to unknown factors.

Previous reports from 1991-2001 also had high rates of alcohol related incidents (17%); and over 70% for illegal driver violations. Primary factors "other than driver" were previously as high as 11%.

Table 5 - Comparison of Accident Data SR-76 From I-15 to Project Access								
	1991-1998 2003-2005							
	Actual*	Statewide	Actual*	Statewide				
		Average		Average				
Average Daily Traffic		5700		13300				
Fatality	0.07	0.0	0.025	0.029				
Fatality+Injury	1.07	0.77	1.02	0.64				
Total	2.07	1.47	1.81	1.33				

Source: TASAS - Table B - California Dept of Transportation

Based on the comparison of primary collision factors, the data continues to show that alcohol, driver violations, and excessive speed are the major causes of accidents on SR-76. The data does not show an increase in volumes or trucks is related to the accident rate which is consistent with previous conclusions.

^{*} Calculations performed by TASAS (currently TSN) output; no manual adjustments were attempted Note: 1991-1998 indicates most conservative rates (fewest incidents)

EXISTING CONDITIONS LEVEL OF SERVICE

Peak Hour Roadway Segments

To precisely define the level of service on SR-76, peak hour analyses were conducted. The peak hour roadway segment analysis component of the Highway Capacity Manual uses several physical inputs including directional splits, pavement widths, prevailing speeds, truck traffic, etc., to determine level of service. Note that Friday and Saturday peak hours are not typical traffic periods analyzed in traffic studies. On weekends, the increase in casino traffic will be offset by the reduction in "home to work" traffic which occurs during the weekdays. On Fridays, the increases from the casino will normally occur after the closure of the landfill.

Using the worst-case input configuration, the resulting peak hour threshold on SR-76 is 1316 vehicles per hour to attain LOS D. Table 5 summarizes the results of the peak hour analysis for SR-76 for the existing condition between the hours of 7:00am to 6:00pm. These hours were used due to corresponding hours of operation for the proposed landfill. As shown on Table 6, all segments of SR-76 east of I-15 operate below the 1316 vehicle threshold determined by the HCM software and are considered to operate at LOS D or better. For the segment west of Highway 395, a deficient LOS E operation exists from approximately 12:00pm to 6:00pm.

Table 6 - Summary of Existing Peak Hour Volumes on State Route 76											
Existing Condition											
		SR-76 Segments									
	West of	395	I-15/Pa	nkey	Pankey/Couser		Couser/Project		East of Project		
Time of Day	Traffic	LOS	Traffic	LOS	Traffic	LOS	Traffic	LOS	Traffic	LOS	
7:00 AM	1055	D	608	С	600	С	617	С	627	С	
8:00 AM	1129	D	651	С	654	C	635	С	645	С	
9:00 AM	1178	D	679	С	655	С	670	С	681	С	
10:00 AM	1296	D	747	D	776	D	761	D	773	D	
11:00 AM	1065	D	614	С	702	D	779	D	791	D	
12:00 PM	1381	Е	796	D	874	D	856	D	870	D	
1:00 PM	1362	Е	785	D	909	D	906	D	920	D	
2:00 PM	1707	Е	984	D	1085	D	1074	D	1091	D	
3:00 PM	1815	Е	1046	D	1147	D	1189	D	1208	D	
4:00 PM	1803	Е	1039	D	1189	D	1115	D	1133	D	
5:00 PM	1546	Е	891	D	978	D	937	D	952	D	
Column Totals	15337		8840		9569		9539		9691		

Source: February 2005 Traffic Counts;

Peak Hour LOS D Maximum is 1316 Vehicles; and LOS E maximum at 2628 Vehicles based on HCM software 4.1f

Intersections

The existing conditions analysis for intersections is summarized in Table 7. As shown on Table 7, all intersections in the study area operate acceptably for the existing conditions. No deficiencies are reported.

A recent study prepared for the Pala Mesa Highlands project (TM 5187) dated August 31, 2005, reported an LOS E condition at the SR-76/I-15 Northbound ramp for the existing condition. In reviewing the traffic volumes and analysis conducted by Kimley Horn, it was determined that the existing traffic volumes were slightly less than this Gregory Canyon study for the same intersection. The two traffic studies report consistent levels of service for the other SR-76 intersections at I-15 South and Highway during peak hours, however, the northbound ramp intersection showed a significant increase in delay.

Both traffic studies used the same regionally accepted analysis program to determine levels of service. Due to the unusual conclusion drawn from the Pala Mesa Highlands report, we reviewed our analysis model inputs and parameters and determined them to be consistent with County defaults. After confirming the analysis model, the existing traffic volumes were inserted from the Pala Mesa Highlands report. The resulting level of service for the Pala Mesa Highlands traffic volumes determined LOS D for the northbound intersection, which is an acceptable level of service within the County of San Diego.

A copy of the existing conditions analyses worksheets is found in Appendix D.

Table 7 - Existing Intersection Level of Service Summary									
AM PEAK HOUR									
	······································	Existing Co	nditions						
	Crit	Delay							
Intersection	Mvmt.	sec/veh	LOS						
SR-76/Old Highway 395	Int.	29.2	С						
SR-76/Interstate 15 South	Int.	20.1	С						
SR-76/Interstate 15 North	Int.	21.1 C							
PM PEAK HO	UR								
SR-76/Old Highway 395	Int.	24.9	C						
SR-76/Interstate 15 South	Int.	19.2	В						
SR-76/Interstate 15 North	Int.	52.4	D						
Delay is measured in seconds per vehicle; Δ Delay=change in delay; LOS=level of service; Delay and LOS calculated using SYNCHRO; Crit. Mvmt = Critical Movement; Int.= Intersection is critical movement (signalized)									

Intersecting Lane Volumes (ILV)

Caltrans' methodology for intersection operation uses Intersecting Lane Volumes (ILV) analysis. This methodology compares critical movements within a signalized intersection to determine acceptable flow. Caltrans flow rates assume a value of less than 1200 vehicles to be free flowing; a value between 1200-1500 is considered acceptable flow; and values exceeding 1500 are considered deficient.

The ILV analysis for the existing condition is summarized in Table 8. As shown in Table 8, all ILV values are within acceptable ranges.

Table 8 - Summary of Existing Intersection Operation Caltrans Intersecting Lane Volumes (ILV)							
Intersection	Existing AM Peak ILV	Existing PM Peak ILV					
State Route 76/Highway 395	977	949					
State Route 76/Interstate 15 South	1015	1152					
State Route 76/Interstate 15 North	755	1479					

ILV=Intersecting Lane Volumes (Caltrans Methodology)

ILV Value = less than 1200 (Free Flow)

ILV Value = 1200-1500 (Acceptable Flow)

ILV Value = exceeds 1500 (Deficient Flow)

Ramp Operation

Ramp operation for the Existing Condition was conducted with the HCS Software for merge and diverge junctions and is summarized in Table 9. As shown on Table 9, all ramps operate acceptably.

Table 9 - Summ	ary of Existing	Ramp O	peration	
	AM P	eak	PM Pe	ak
Ramp ID	Density	LOS	Density	LOS
SR-76/I-15 North On	19.2	В	19.9	В
SR-76/I-15 North Off	20.7	С	22.2	C
SR-76/I-15 South On	19.1	В	18.9	В
SR-76/I-15 South Off	22	С	21.9	C

Analysis performed with Highway Capacity Software (Merge/Diverge)

Density = Passenger Cars per lane per mile

LOS = Level of service defined by HCS output

Existing Freeway Segment Operation

Freeway segments are analyzed using Caltrans methodology, which includes peak hour factors, directional distribution, and truck factors, comparing the output to level of service. Table 10 summarizes the freeway segment operation in the project vicinity on Interstate 15. As shown on Table 10, Interstate 15 segments north and south of SR 76 operate acceptably for the existing condition.

							Existing Condition		
Interstate 15	#	Peak	Peak	Dir.	Truck		C		
Segment Limits	Lanes	Capac	Hr. %	Split	Factor	ADT	V/C	ros	
North of State Route 76	4	0076	7.35%	25%	10.23%	135000	0.654	С	
South of State Route 76	4	9200	6.82%	25%	8.14%	132000	0.582	В	
# Lanes = Number of lanes in one direction; Peak Capac = peak capacity in one direction	Japac = peak ca	pacity in one di	ection						
Peak Hr % = peak hour percentage per ratio of peak hour versus average daily traffic (per Caltrans Traffic Volumes)	k hour versus av	verage daily trafi	ic (per Caltrans	s Traffic Vol	umes)				
Dir. Split = directional split percentage of peak hour traffic traveling in peak direction; Truck Factor = influence of heavy vehicles	ır traffic travelii	ng in peak direct	ion; Truck Fact	or = influenc	e of heavy vehicle	S			
ADT = average daily traffic; V/C = volume to capacity ratio per Caltrans District 11 methodology; LOS = Level of service A to F, including F(0) to F(3)	city ratio per C	altrans District 1	1 methodology	; LOS = Lev	el of service A to l	F, including F(0)	to F(3)		
Calculation formula = ((ADT*PH%*Dir. Split)+Truck Factor) / Peak Capacity	uck Factor) / Po	eak Capacity	!						

SECTION III - TRIP GENERATION & ASSIGNMENT, CUMULATIVE TRAFFIC

The proposed landfill will be located in Gregory Canyon, approximately 3.5 miles east of Interstate 15 on State Route 76. The Gregory Canyon site is planned to contain approximately 30 million tons of refuse with an operating life of about 30 years.

PROJECT TRIP GENERATION

Trip generation for a landfill is unique to operations of the facility. Truck traffic is expected to utilize SR-76 west to Interstate 15, with a small amount of traffic (5%) traveling east on SR-76. Population densities in relation to this proposed facility indicates that most of the waste originates from areas south and west of I-15. Only nominal amounts will originate from the east on SR-76 or north on I-15; and only insignificant amounts of vehicles would utilize other access points along SR-76, such as Rice Canyon Couser Canyon, Old Highway 395, Gird Road or Mission Road. Discussions with the applicant have resulted in defining operations such that trips can be determined by input rate, employment, known collection truck thresholds, and other service/visitor trips to the site. Using the maximum input rate of 5,000 tons of material per day utilizing 8-ton collection trucks, Table 11 summarizes the total number of vehicles and trucks expected to utilize the landfill site during specific hours of the day. As noted on Table 11, the 5,000 tons per day generate a maximum of 625 refuse trucks. The passenger car equivalent (PCE) of 1.5 was applied to convert heavy trucks into equivalent passenger cars. As detailed previously in this report, the Highway Capacity Manual (HCM) provides the regionally acceptable PCE's based on street grade and average speed. Field studies concluded no grades greater than 2% on SR-76 between I-15 and the project access with averaged speeds of 37.85 mph. The trip generation on Table 10 includes the 1.5 PCE applied to trucks.

In this case, the solid waste permit will limit the project to a total of 2085 trips per day and a total of 675 trucks per day from all sources including the trucking of recycled water. When the project reaches a total of 2085 daily trips or 675 trucks per day form all sources, the project will be required to close down for that day. On days when more trips are utilized for recycled water, fewer trips will be available from other sources. As noted later in this report, the project will be required to maintain a daily log of its total daily trips and daily truck available to the LEA at all times to ensure compliance with these conditions contained in the solid waste permit.

To ensure a worst-case analysis of project traffic impacts, the analysis has been completed based on the assumption that the project will accept 5000 tons of solid waste per day. However, the solid waste permit will limit the project to a total of 1 million tons of solid waste per year or an average of 3200 tons per day. Accordingly, the traffic impacts for the project contained in this traffic study, overstates the expected traffic impacts of the project on a daily basis over the course of a year. As shown on Table 11, while this traffic study analyzes project traffic based upon a maximum of 2085 daily trips, expected trip generation over the course of a year given the tonnage limitation in the solid waste permit is 1410 daily trips. The higher number of trips has been utilized to ensure a worst-case analysis of daily project trips on those limited days where the project will receive 5000 tons of waste in a day.

At the daily maximum capacity of 5,000 TPD, the 8-ton refuge trucks equate to 625 trucks (5,000 tons divided by 8 ton trucks). However, at the average capacity of approximately 3,200 TPD contained in the solid waste permit, refuge truck traffic would be 400 trucks per day (3,200 tons divided by 8 ton trucks). Daily refuge truck deliveries may also be decreased through the use of vehicles that carry more than 8 tons of trash.

		Table 1	ı - Sumı	nary of Ti	Table 11 - Summary of Trip Gregory Canyon Trip Generation	ry Canyor	ı Trip G	eneratio	n n			
Maximum Waste Volume = 5000		tons per day	ay						:			-
Average Waste Volume = 3200 tons per day	= 3200 tor	ıs per day	,									
Maximum Volume Trucks = 675 trucks x 1.5 PCE x 2 trips/day = 2025 trips (625 maximum 8-ton refuse trucks plus construction and water)	cs = 675 to	rucks x 1.	5 PCE x	2 trips/day :	= 2025 trips	(625 maxi	mum 8-tc	n refuse t	rucks plu	s constru	ction and	water)
Average Volume Trucks = 450 trucks x 1.5 PCE x 2 trips/day = 1350 trips (400 max 8-ton trucks plus construction and water)	=450 tru	cks x 1.5	PCE x 2	trips/day =	1350 trips (.	400 max 8-	ton truck	s plus con	struction	and wate	r)	
Number of employee vehicles = 20 per day x 2 trips/day = 40 trips	nicles = 20) per day	x 2 trips/e	ay = 40 tri	sd							
Number of Service/Visitor Vehicles = 10 per day x 2 trips/day = 20 trips	or Vehicle	s = 10 pe	r day x 2	trips/day =	20 trips			ļ				
		W	AXIMU	M WASTE	MAXIMUM WASTE VOLUME TRIP GENERATION	TRIP GE	NERAT	NOI				
					Tin	Time of Day			;			
Vehicle Type	7:00	8:00	9:00	10:00	11:00	12:00	1:00	2:00	3:00	4:00	5:00	Total
Trucks [1]	82	141	202	183	243	202	183	243	243	183	120	2025
Employee	11	6	0	0	0	0	0	0	0	11	6	40
Service	0	2	4	4	4	0	2	4	0	0	0	20
Hourly Total	93	152	206	187	247	202	185	247	243	194	129	2085
		A	VERAG	E WASTE	AVERAGE WASTE VOLUME TRIP GENERATION	TRIP GE	NERATI	NO				
					Tin	Time of Day						
Vehicle Type	7:00	8:00	9:00	10:00	11:00	12:00	1:00	2:00	3:00	4:00	5:00	Total
Trucks [1]	54	94	135	122	162	135	122	162	162	122	80	1350
Employee	11	6	0	0	0	0	0	0	0	11	6	40
Service	0	2	4	4	4	0	2	4	0	0	0	20
Hourly Total	99	105	139	126	166	135	124	166	162	133	88	1410

Note: The solid waste permit for the project will limit daily traffic to a total of 675 trucks or 2085 daily trips.

Vehicles are shown as two-way (enter/exit) except employees which are shown as one way entering AM/existing in PM PCE = passenger car equivalent per HCM Table 8-9

[1] Trucks = Max trucks permitted is 675 (includes hauling, recycled water, and construction trucks)

It is possible that the project site would be loaded by a proportion of 10-ton trucks. Using 10-ton trucks, the maximum refuse threshold would be met with 500 trucks (5,000 divided by 10). At such time, the site would be required to close for the day, having reached the maximum tonnage. However, the site could still accommodate additional trucks for recycled water and/or construction up to the 675 truck maximum.

After the landfill is opened, this daily volume of trucks will vary. The fluctuation in the number of exporting trucks can be accommodated by the difference between the absolute "maximum" of 5,000 tons of trash per day (2,085 trips including construction, recycled water, employee, service and visitor traffic) as opposed to the "average" 3,200 tons per day (1,410 trips). The difference between these two daily volumes expressed in PCE trips, is 675 per day.

As noted previously, the solid waste permit for the project will limit both daily and yearly traffic. Daily traffic will be limited to a maximum of 675 trucks per day from all sources including recycled water and a total of 2085 daily trips. Yearly traffic will be limited by a solid waste permit condition limiting the project to a total of 1 million tons of solid waste per year or an average of 3200 tons per day translating into the 1410 daily trips described in this analysis. The project will be required to implement specific operational requirements, most notably an early warning system, to ensure compliance with these permit conditions.

It should be noted that construction activity prior to opening the landfill would consist of fewer truck trips than once the facility is open. Therefore, no pre-opening construction traffic analysis was conducted as the operational project related conditions analyze worst-case traffic conditions.

Table 11 shows that employees are expected to generate 40 trips per day. The 8 ton collection trucks (including construction and recycled water trucks) will generate 2,025 daily passenger car equivalents (PCE). Service/visitor vehicles are assumed to generate 20 trips. Therefore, during the heaviest expected input rate for this facility, Gregory Canyon landfill will generate approximately 2,085 daily PCE trips. Table 11 also shows the average trip generation for the site. These totals represent a typical traffic load at the facility during normal operation. The actual average trips per day are estimated at 1,410 daily trips and include construction and recycled water trucks.

Discussion over the total project traffic trips considered the difference between trash "haul" trucks and "transfer" trucks. This study assumed a trash haul truck as an 8-ton capacity vehicle and, supported by the Highway Capacity Manual, established a passenger car (PCE) equivalency of 1.5 per 8-ton truck. A transfer truck has the capacity of 24-tons with a PCE factor established by the County of San Diego of 4.0 per vehicle.

By comparison:

A single 8-ton truck making a full trip (to and from) with a PCE factor of 1.5 will generate three (3) total trips. (1 truck) X (2 trip lengths) X (1.5 PCE) = 3 total trips

A single 24-ton truck making a full trip (to and from) with a PCE factor of 4.0 will generate eight (8) total trips. (1 truck) X (2 trip lengths) X (4.0 PCE) = 8 total trips.

Since the proposed project traffic is based on maximum tonnage not trucks, the 24-ton transfer truck would replace three (3) 8-ton direct haul trucks.

By comparison:

Three 8-ton direct haul trucks generate nine (9) total trips: $3 \times 3 = 9$ One 24-ton transfer truck generate eight (8) total trips: $1 \times 8 = 8$

Replacing direct haul trucks with transfer trucks would ultimately reduce the project's total traffic. The maximum 8-ton direct haul trucks were utilized for this analysis to generate the worst-case project traffic.

PROJECT TRIP DISTRIBUTION

D&A distributed project traffic to likely routes and destinations described previously. Based on the geographic location and available arterials leading to mainline access, 95% of the traffic is oriented west of the project site and 5% is oriented east of the project site.

In contrast to previous studies for this project, implementation of recycled water trucks totaling 267 trips has effected overall project distribution. The previous study estimated a total of 10% (or 209 PCE trips) west of Highway 395 on SR-76, however, this distribution did not calculate the known route for recycled water truck trips which are now part of the current project. The 267 worst-case water trucks are oriented north/south on Interstate 15, due to the location of the Olivenhain facility located south on I-15, that will travel east on SR-76 to the project site. None of these recycled water truck trips will travel west on SR 76 after exiting I-15. These vehicles represent approximately 13% of overall traffic for the site. As stated above, the total project traffic for the landfill is 2085 trips. Noting that 267 of these trips are committed to the I-15 north/south corridor to collect/distribute water, a higher percentage of project distribution was generated on I-15 and less to the west along SR-76. Mathematically, by assigning the 267 known trips south/north on I-15, the remaining 1,818 trips (2085 less 267) result in approximately 8% of the project total trips (approximately 167 PCE trips) for SR-76 west of I-15. (Note: some rounding of numbers occurs in distribution and assignment.)

Additionally, subsequent to previous traffic report comments, the City of Oceanside has initiated a policy to not allow waste transfer into the Gregory Canyon site. This further reduces the amount of traffic oriented on SR-76 west of I-15.

The relatively isolated location of the project limits the haul routes to and from the project. The San Diego County Circulation Element routes of Couser Canyon Road and Rice Canyon Road will still serve as local haul routes to SR-76 for the communities of Rainbow and northern Valley Center. These local haul routes are not linked to any regional routes, except for SR-76 in the vicinity of the landfill, thus the potential of their becoming new regional routes to the project is not considered feasible.

With the above factors assisting in determining project distribution, along with applying known population densities within regional origins/destinations, approximately 77% of the traffic is expected to utilize the I-15 corridor to the south, 10% to the north, and 8% west along SR-76.

Nominal truck trips will utilize local roadways such as Rice Canyon and Couser Canyon, however these volumes are considered insignificant due to the existing low volumes and adequate levels of service on these local roadways. In order to evaluate a conservative worst-case analysis of impacts onto state highways and interstates, no project trips were assigned to local roads such as Rice Canyon or Couser Canyon.

Figure 5 graphically depicts the distribution splits.

Figure 6 shows the traffic volume associated with the directional distribution, converted into PCEs. As stated previously, the morning and afternoon peak hours generally occur between 7-9am and 4-6pm, respectively. Generally, the highest project traffic during these peak hours is acceptable for analysis.

The project traffic was added to the existing traffic volumes. The resulting existing plus project traffic volumes are provided on Figure 7.

CUMULATIVE PROJECT TRAFFIC

Research into County records identified approximately 34 additional projects to be included in the analysis within the Pauma/Pala regional district, and an additional 180 projects identified in the Valley Center area with regional influence to the SR-76 corridor. A summary of the major projects in the Pauma/Pala study vicinity are described as follows (Appendix C provides a summary of all project identifications, including the Valley Center area and miscellaneous Pauma/Pala area projects):

Pala Casino Expansion - includes 70,000 square feet of gaming facility expansion, resort hotel with 50 rooms, and ancillary development. This project generates approximately 4,950 daily trips 111 morning trips and 299 evening trips.

Meadow Wood (formerly Pankey Ranch - TM 5354) includes approximately 1,244 dwelling units on approximately 390 acres. This project generates 10,566 daily trips with 845 occurring in the morning peak hour and 1,013 in the evening peak hour. This development is in the planning stages and is not expected to begin construction for nearly three (3) years. For the near term condition, approximately 10% of this project is included in the 3-year near term analysis.

Passerelle (TM 5338) - proposes 698 single family units, 252 senior housing units, 4 acres of town center and 150,000 square feet of office space, generating approximately 24,846 daily trips, 2,830 morning peak hour trips and 3,054 evening peak hour trips. This development is in the planning stages and is not expected to begin construction for three (3) years. For the near term condition, approximately 5% of this project is included in the 3-year near term analysis.

Campus Park Specific Plan (includes all parcels) - This specific plan consists of a mixed use development on the eastside of I-15, north of SR-76. Current applications for this project include a 2-year junior college with a maximum full-time enrollment of 8500 students. For the near term interim condition, it was assumed that 2250 students will be enrolled in the next three years (which equates to approximately 750 students per day on campus).

Rosemary Mountain Palomar Aggregates - This project is located on the north side of SR-76, approximately 1-1/4 miles east of I-15. The transportation element was obtained for this project for determining project traffic and distribution. This project is conditioned to improve SR-76 to four lanes from its access to I-15. This mining project has heavy truck traffic which was converted into PCEs.

Calmat Pala Mine - This project is located on the Pala Indian Reservation, east of the Gregory Canyon project and was determined to be in operation during the data collection process. The existing counts account for this project.

Darnell & associates, inc.

051008DD.dwg 2-21-07

CDJ

FIGURE 5
PROJECT DISTRIBUTION PERCENTAGES

Darnell & associates, inc.

051008DD.dwg 2-21-07

CDJ

EXISTING PLUS PROJECT TRAFFIC

Pipeline #6 - This is a construction project to install a 30-mile long pipeline through the Gregory Canyon site. Information on construction of the pipeline determined this project will generate 40 truck trips per day (or 60 ADT converted to PCEs), and an additional 80 trips per day for employee/service vehicles, for a total of 140 daily trips. This traffic is oriented to the east during operation.

Sycamore Ranch - The Sycamore Ranch specific plan is located on 482 acres west of I-15 and north of SR-76, to develop 486 residential lots and a golf course. The transportation document was used for traffic generation and distribution. The latest MUP reduces the lots on this project to 195 and a golf course. This development is expected to be 50% occupied in the 3-year near term analysis.

Gas Station - A proposed gas station located on the southwest corner of I-15/SR-76. It was assumed to be a 12-fueling station facility, generating approximately 1,800 daily trips.. Traffic generation was estimated using approved trip generation rates and distributed to the street network.

I-15/SR-76 Master Specific Plan - This is a master plan project which includes the Lake Rancho Viejo development area (included below), commercial development, RV Park. This project was removed from the near term cumulative analysis due to lack of processing activity or technical documentation.

Lake Rancho Viejo - This project is located south of the Campus Park Specific Plan project and is approved for 816 dwelling units. This development is expected to be 25% occupied in the 3-year near term analysis.

Brooks Hills - This project is a 110 lot residential development west of Gird Road on SR-76 in the Fallbrook community. The transportation element of the EIR was used to determine project traffic and distribution.

Dulin Ranch - This project is located south of SR-76 and west of I-15 (southeast of Sycamore Ranch), and proposes 526 homes on 625 acres, and includes a school. Due to the inactivity and lack of technical documentation on this project it was removed from the near term analysis.

Improvement Project on SR-76 - This is a Caltrans project for future improvements to SR-76 from 0.3 miles east of Airport Road to 0.2 miles east of I-15. This project does not directly impact traffic associated with the near term cumulative analysis and no trips were added to the system to account for this project.

Pauma Valley Fruit Packing Facility - This project is located near SR-79 east of the proposed Gregory Canyon project, and includes 38,060 square feet. Traffic for this facility was estimated using approved trip generation rates and distributed manually to the street network.

Cole Grade Park - (MUP-98-026) is an 8.96 acre multi-use park which generates approximately 360 daily trips with 29 in the morning peak hour and 36 in the evening peak hour.

Valley Center Church (P-03-083) is a school/church (120 maximum students) and generates approximately 766 daily trips with 66 in the morning peak hour and 121 in the evening peak hour.

Skyridge Estates-Phase II (STP-01-006), 2 estate lots, generates approximately 24 daily trips with 2 in the morning peak hour and 2 in the evening peak hour.

Countryside Veterinary (STP-02-006), 3,280 square feet of veterinary medicine space generates approximately 16 daily trips with 1 in the morning peak hour and 2 in the evening peak hour.

The remaining traffic generators throughout the County which contribute to the SR-76 facility are summarized in Appendix C.

NEAR TERM CUMULATIVE TRAFFIC

Existing plus near term traffic without the proposed project is presented on Figure 8. The addition of project traffic to the near term condition results in the near term cumulative (with project) traffic volumes which are presented on Figure 9.

SECTION IV - IMPACTS

PUBLIC FACILITIES ELEMENT IN COUNTY

According to page XII-4-18 of the *Public Facility Element* for San Diego County, a discretionary project which has a significant impact on roadways will be required, as a condition of approval, to make "improvements or other measures necessary to mitigate traffic impacts to avoid reduction in the existing Level of Service below 'D' on off-site and on-site abutting Circulation Element roads. New development that would significantly impact congestion on roads at LOS "E" or "F", either currently or as a result of the project, will be denied unless improvements are scheduled to increase the LOS to "D" or better or appropriate mitigation is provided. Appropriate mitigation would include a fair share contribution in the form of road improvements or a fair share contribution to an established program or project. If impacts cannot be mitigated, the project will be denied unless a specific statement of overriding findings is made pursuant to Section 15091(b) and 15093 of the State CEQA Guidelines."

The *Public Facility Element* for the County of San Diego also requires that all on-site Circulation Element roads operate at Level of Service C or better. If the Level of Service at an on-site Circulation Element road is reduced below LOS C, the proposed project must provide appropriate mitigation measures.

CUMULATIVE IMPACTS

The County of San Diego has developed an overall programmatic solution that addresses existing and projected future road deficiencies in the unincorporated portions of San Diego County. This program includes the adoption of a Transportation Impact Fee (TIF) program to fund improvements to roadways necessary to mitigate potential cumulative impacts caused by traffic from future development. This program is based on a summary of projections method contained in an adopted planning document, as referenced in the State CEQA Guidelines Section 15130 (b)(1)(B), which evaluates regional or area wide conditions contributing to cumulative transportation impacts. Based on SANDAG regional growth and land use forecasts, the SANDAG Regional Transportation Model was utilized to analyze projected buildout (Year 2030) development conditions on the existing circulation element roadway network throughout the unincorporated area of the County. Based on the results of the traffic modeling, funding necessary to construct transportation facilities that will mitigate cumulative impacts from new development was identified. Existing roadway deficiencies will be corrected through improvement projects funded by other public funding sources, such as TransNet, gas tax, and grants. Potential cumulative impacts to the region's freeways have been addressed in SANDAG's Regional Transportation Plan (RTP). This plan, which considers freeway buildout over the next 30 years, will use funds from TransNet, state and federal funding to improve freeways to projected level of service objectives in the RTP.

The proposed project generates 2085 daily trips. These trips will be distributed on circulation element roadways in the County that were analyzed by the TIF program, some of which currently or are projected to operate at inadequate levels of service. The potential growth represented by the proposed project was included in the growth projections upon which the TIF program is based. Therefore, payment of the TIF, which will be required at issuance of building permits, in combination with other components of the program described above, will fully mitigate potential cumulative and future traffic impacts to less than significant.

LEVELS OF SIGNIFICANCE STANDARDS

The County of San Diego has developed Draft Guidelines to determine level of significance standards for direct and cumulative project impacts. These are summarized as follows:

Roadway Segments

The project is deemed to have a significant project impact on a roadway segment if:

The additional or redistribution of ADT generated by the project will cause an adjacent or nearby County Circulation Element roadway to operate below LOS D and will significantly increase congestion as identified in Table 12 (below), and/or:

The additional or redistributed ADT generated by the proposed project will cause a residential street to exceed its design capacity, and/or:

The addition or redistributed ADT generated by the proposed project will significantly increase congestion on a Circulation Element Road, State Highway or intersection currently operating at LOS E or LOS F as identified in Table 12 (below).

Signalized Intersections

The project is deemed to have a significant project impact at a signalized intersection if:

The additional or redistribution of ADT generated by the project will cause signalized intersection to operate below LOS D and will significantly increase congestion as identified in Table 12 (below), and/or:

The addition or redistributed ADT generated by the proposed project will significantly increase congestion at a signalized intersection currently operating at LOS E or LOS F as identified in Table 12 (below).

Unsignalized Intersections

The project is deemed to have a significant project impact at an unsignalized intersection if:

The proposed project generates 20 or more peak hour trips to a critical turn movement and cause the unsignalized intersection to operate below LOS D, or

The proposed project generates 20 or more peak hour trips to a critical turn movement and the unsignalized intersection currently operates at LOS E, or

The proposed project generates 5 or more peak hour trips to a critical turn movement and cause the unsignalized intersection to operate below LOS E, or

The proposed project generates 5 or more peak hour trips to a critical turn movement and the unsignalized intersection currently operates at LOS F.

	Table 12 - Measures of Signific	ant Impacts	
ALLOWAI	BLE INCREASES ON CONGESTED F	ROADS & INTERS	ECTIONS
	ROADWAY SEGMEN	TS	
	2-Lane Roadway	4-Lane Roadway	6-Lane Roadway
LOS E	200 ADT	400 ADT	600 ADT
LOS F	100 ADT	200 ADT	300 ADT
	INTERSECTIONS		
	Signalized	Unsign	alized
LOS E	Delay of 2 Seconds	20 pk hour to Cri	tical Movement
LOS F	Delay of 1 Second, or	5 pk hour to Crit	ical Movement
	5 pk hour to Critical Movement		
ALLOWABLI	E INCREASES ON CIRCULATION ELEM	MENT ROADS/INTE	RSECTIONS
	Roadway Segments	Signalized I	ntersections
LOS E&F	0.02 Increase to V/C	2.0 second	s of delay
	1 miles per hour speed		
LOS = level of service	ce		
ADT = average daily	traffic		
V/C = volume to cap	acity ratio		
	trips in the critical movement		

Freeways

Caltrans has established a goal of maintaining a LOS D, but has not provided significance criteria. As a result, this traffic study will utilize the significance criteria developed by SANTEC (San Diego Traffic Engineers Council), which is in common usage in the County. SANTEC criteria treats a project as having a direct impact requiring mitigation if it causes an increase of more than 2% in freeway traffic on a segment operating at LOS E or worse.

EXISTING PLUS PROJECT CONDITIONS

Exiting Plus Project Intersections

Existing plus project intersection operation is summarized in Table 13. As shown on Table 13, all study intersections operate acceptably with the addition of the proposed project. The project does not meet County significance criteria and no off-site mitigation is required. Note that the project access remains stop controlled for exiting traffic and operates acceptably with the acceleration and deceleration lanes proposed as part of the project features.

Table 13	- Existing	Plus Pro	ject Ir	itersectio	n Lev	el of Servi	ce Summary				
			AM PI	EAK HOUR							
		Existi Conditi	÷			Exist	ing Plus Project				
	Crit	Delay		Delay			Max Critical	Proj	Proj.		
Intersection	Mvmt.	sec/veh	LOS	sec/veh_	LOS	∆ Delay	Movement	Signif?	Impact		
SR-76/Old Highway 395	Int.	29.2	С	29.3	С	0.1	8	N/A	None		
SR-76/Interstate 15 South	Int.	20.1	С	21.0	С	0.9	79	N/A	None		
SR-76/Interstate 15 North	Int.	21.1	С	22.3	С	1.2	88	N/A	None		
SR-76/Project Access	WB	N/A		8.4	A		98	N/A	None		
NB 12.1 B											
			PM PI	EAK HOUR							
SR-76/Old Highway 395	Int.	24.9	С	25.7	С	0.8	10	N/A	None		
SR-76/Interstate 15 South	Int.	19.2	В	19.6	В	0.4	94	N/A	None		
SR-76/Interstate 15 North	Int.	52.4	D	53.1	D	0.7	104	N/A	None		
SR-76/Project Access	WB	N/A		8.6	Α		116	N/A	None		
	NB _			15.4				<u> </u>			

Delay is measured in seconds per vehicle; LOS=level of service; Δ Delay=change in delay;

Max Critical Movement = maximum vehicles in single critical movement

Delay and LOS calculated using SYNCHRO; Int.=Intersection; EB=eastbound, NB=northbound

Proj Signif? = Project significance based on County of San Diego's Guidelines for Determining Significance

Existing Plus Project Peak Hour Roadway Segment Analysis

The hourly analysis on SR-76 was conducted and is summarized on Table 14. Note that volumes which exceed 1316 hourly volumes results in LOS E traffic flow. As shown on Table 14, the project exceeds the LOS D maximum threshold of 1316 peak hour vehicles from 2:00pm to 5:00pm on State Route 76 east of I-15. The existing plus project hourly traffic results in "direct project impacts" and requires mitigation. (It is noted that 95% of project traffic travels west of the project driveway, resulting in 1,981 westerly oriented trips assigned to SR-76.)

As noted previously, the segment west of Highway 395 is currently operating at LOS E conditions with or without the project from 12pm to 6pm. Since the project contributes less than 200 vehicles on the LOS E roadway it is not required to mitigate for this impact under the County's significance criteria. However, the project incrementally adds traffic to the existing unacceptable level of service on this segment of SR-76 which is treated as a significant impact for purposes of this traffic study. The project will be required to pay the County's Transportation Impact Fee to fund its fair share of this cumulative traffic condition.

It is our recommendation that mitigation for the direct impact to SR-76 would be to limit project related traffic within the evening peak hours. Table 15 was created to demonstrate that while traffic can be limited during the hours of 2:00pm to 5:00 pm, overall traffic can be dispersed throughout the day without exceeding peak hour thresholds, maintaining the maximum of 675 truck trips.

					Ä	able 14 -	Sumn Existin	nary of	Peak Proje	Table 14 - Summary of Peak Hour Volumes on State Koute 76 Existing Plus Project Condition - 5,000 tpd	olumes tion -	s on Sta 5,000 t ₁	ite Koi	ite /o							
	5000 tpd									93	SR-76 Segment	gment									
	Project		West of	- 395 J			I-15/Pankey	nkey		_	Pankey/Couser	Conser)	Couser/Project	roject			East of Project	roject	
Time of Day	Traffic	Existing	TOS	w/Proj	10S	Existing	SOT	w/Proj	ros	Existing	ros	w/Proj	ros	Existing	100	w/Proj	ros	Existing	ros	w/Proj	ros
7:00 AM	88	1055	Q	1067	۵	809	Ü	969	Q	909	C	889	U	617	Ú	705	Ω	627	Ç	635	O
8:00 AM	141	1129	Ω	1141	Δ	651	C	795	Q	654	С	798	D	635	Ü	779	Ω	645	Ö	654	O
9:00 AM	196	1178	Ω	1194	Δ	619	ပ	875	D	655	C	851	D	029	ပ	998	D	681	ပ	169	C
10:00 AM	178	1296	Ω	1308	Ω	747	D	925	Q	776	۵	954	D	761	۵	939	Ω	773	D	783	D
11:00 AM	235	1065	D	1078	Q	614	C	849	D	702	Ω	937	Д	977	D	1014	Q	791	Q	799	Д
12:00 PM	192	1381	E	1395	E	96 <i>L</i>	D	886	D	874	D	1066	Ω	856	Ω	1048	Ω	870	D	628	Ω
1:00 PM	176	1362	E	1377	Э	785	D	196	D	606	D	1085	Ω	906	D	1082	D	920	Q	929	Ω
2:00 PM	235	1707	떠	1727	æ	984	D	1219	D	1085	D	1320	Э	1074	D	1309	Ω	1001	О	1102	۵
3:00 PM	231	1815	E	1835	E	1046	D	1277	D	1147	Ω	1378	Э	1189	Ω	1420	я	1208	Ω	1219	Q
4:00 PM	184	1803	я	1821	E	1039	D	1223	D	1189	Ω	1373	H	1115	Ω	1299	Δ	1133	D	1144	۵
5:00 PM	122	1546	a	1561	E	891	D	1013	D	978	D	1100	D	937	D	1059	Ω	952	Ω	961	Ω
Column Totals	1861	15337		15504		8840		10821		9569		11550		9539		11520		1696		9796	
Source: February 2005 Traffic Counts; Project Traffic	2005 Traffic	Counts; Proj	ject Traf	fic of 1981	vehicles	s is 95% wes	t oriente	1 from 200	85 total;	of 1981 vehicles is 95% west oriented from 2085 total; (Note: traffic east of project is 5% or 105 trips; and west of 395 is 8% or 167 trips)	east of I	project is 5	i% or 105	trips; and	west of 3	95 is 8% c	ır 167 trij	ps)			
Peak Hour LOS D Maximum is 1316 Vehicles based) Maximum is	s 1316 Vehic	les base		on latest software version	version															

Table 15 - Summary of Peak Hour Volumes on State Route 76	of the state of th	SR-76 Segment (Redistributed Project Traffic)	Pankey/Couser Couser/Project East of Project	30 1 20 1	W/F10J	600 C 706 D 617 C 723 D 627 C 635 C	654 C 820 D 635 C 801 D 645 C 654 C	655 C 871 D 670 C 886 D 681 C 691 C	776 D 982 D 761 D 967 D 773 D 783 D		(2) (3)	874 D 1106 D 856 D 1088 D 870 D 879 D	909 D 1125 D 906 D 1122 D 920 D 929 D	1085 D 1300 D 1074 D 1289 D 1091 D 1102 D	4	20071	1189 D 1300 D 1115 D 1226 D 1133 D 1144 D	978 D 1145 D 937 D 1104 D 952 D 961 D	9796 11520 9691 97796	11330
of Peak Hou	r cmr y gmm	SR-76	200		w/Proj LOS	714 D	817 D	895 D	053 D	+	849 D	1028 D	G 1001	┝	+	1157 D	1150 D	1058 D	10001	10821
mmary o	cu - rwis		T-15/Pankey	I-TOIL dills	ros	C	ပ	3	+	+	U	Q	6	\vdash	╁		D	Ω	-	
e 15 - Su	alstribut				Existing	809	651	629	142	4/	614	962	787	7 20	704	1046	1039	891	9 9	XXX
Table					ros	Ω	۵	-	+	4	Δ	<u>E</u>	-	+	2	田	Ħ	M	┡	_
			1000	West of 395	w/Proj	1067	1141	1104	1 8	1308	1078	1395	1	//ст	17/1	1835	1821	1361		15504
			1	West	ros	Δ		ے	,		Д	[±	4 6	=1	H	E	<u> </u>	12	-	_
					Existing	1055	1129	1170	11/0	1296	1065	1381	1001	7987	1707	1815	1803	1546		15227
		Proi	3	Traffic	Diff.	~	22	8	707	28	0	70	3 5	040	-20	-120	-73	, y		
		Redist.		Proj	Traffic	55	166	3	210	206	235		727	216	215	111	111	5	ò	.00.
				Proj	Traffic	+-	27.	1 3	136	178	235		761	176	235	231	181	5 5	771	
			_		Time	+-	3 8	300	006	1000	1100		1200	1300	1400	1500	100	0001	30/1	

005 Traffic Counts; Project Traffic of 1981 vehicles is 95% west oriented from 2085 total; (Traffic east of project is 5% or 105 trips; west of 395 is 8%, 167 trips) Peak Hour LOS D Maximum is 1316 Vehicles based on latest software version

Bold indicates volume exceeds maximum threshold

As shown on Table 15, the reductions in traffic apply between the 2:00pm-5:00pm hours. The maximum allowable trips during the 2:00pm hour are 215 trips; during the 3:00pm hour is 111 trips; and the 4:00pm hour is 111 trips. Trips are calculated using a passenger car equivalency (PCE) of 1.5 per truck, multiplied by 2.0 to generate two-way traffic (enter and exit). For example, one (1) truck multiplied by 1.5 PCE, multiplied by 2.0 trips, equals three (3) totals trips per truck. The maximum trips during the effected peak hours equate to the following truck traffic.

```
2:00pm hour of 215 trips equals 72 trucks (215 divided by 1.5 divided by 2.0) 3:00pm hour of 111 trips equals 37 trucks (111 divided by 1.5 divided by 2.0) 4:00pm hour of 111 trips equals 37 trucks (111 divided by 1.5 divided by 2.0)
```

Project operations will be required to monitor truck traffic throughout the day to a maximum of 675 trucks (including construction, recycled water, and trash hauling trucks). Additionally, as a result of the above analysis, further monitoring is required between the hours of 2:00pm-5:00 pm. Once the site has reached the maximum allowable trucks as defined during the peak hours above, or met tonnage maximum, the project operations will be required to close down and maintain thresholds.

To ensure daily traffic restrictions, the project shall implement the following measures upon commencement of operations:

Once 95% of the maximum daily traffic limit is reached, the landfill operator shall immediately notify commercial waste haulers to curtail waste deliveries as needed to assure compliance with the maximum daily traffic limits. Notwithstanding the above, the landfill operator may not refuse acceptance of any waste collection vehicle that was traveling on SR 76 east of I-15 at the time notice was given.

Each contract for waste delivery at the landfill shall notify the customer of the peak hour traffic restrictions, shall require that the customer cooperate in good faith in scheduling deliveries to adhere to peak hour restrictions, and shall implement a notification system whereby the customer would be directed to use alternative disposal facilities as needed to assure compliance with the peak hour traffic restrictions.

Compliance with peak hour traffic restrictions shall be monitored on the inbound lane of the landfill access road at a location as near as feasible to SR 76. Vehicle trips will be counted manually or, if feasible, electronically, and where appropriate converted into PCE. If electronic measurement methods are incorporated, and if feasible, electronic traffic counts shall be made available to the Department of Environmental Health at its offices on a real-time basis. The landfill operator shall report traffic count information to the Department of Environmental Health weekly in writing.

Once 75% of the peak hourly restriction is reached, the landfill operator shall immediately notify commercial waste haulers to curtail waste deliveries, pursuant to the contract arrangements described above, as needed to assure compliance with the peak hour traffic restrictions. Notwithstanding the above, the landfill operator may not refuse acceptance of any waste collection vehicle that was traveling on SR 76 east of I-15 at the time notice was given

Ramp Operation

Ramp operation for the existing plus project condition is summarized on Table 16. As shown on Table 16 all ramps operate acceptably and no mitigation is required.

Table 16 -	Summary	of Exis	ting Plus	Project	Ramp O	peratio	n	
	E	xisting (Condition		Ex	isting P	lus Project	
	AM Po	eak	PM Pe	eak	AM Po	eak	PM Pe	ak
Ramp ID	Density	LOS	Density	LOS	Density	LOS	Density	LOS
SR-76/I-15 North On	19.2	В	19.9	В	19.2	В	_20	В
SR-76/I-15 North Off	20.7	С	22.2	С	21.1	С	22.7	C
SR-76/I-15 South On	19.1	В	18.9	В	19.3	В	19.1	В
SR-76/I-15 South Off	22	С	21.9	С	22.1	С	21.9	C

Analysis performed with Highway Capacity Software (Merge/Diverge)

Density = Passenger Cars per lane per mile

LOS = Level of service defined by HCS output

Caltrans Freeway Segments

Existing plus project traffic on Interstate 15 segments north and south of SR-76 were analyzed with the Caltrans' Volume to Capacity methodology and are summarized on Table 17. As shown on Table 17, freeway segments operate acceptably and the project does not contribute significantly. No mitigation is required.

Caltrans ILV Analysis

Caltrans ILV Analysis for the existing plus project condition is summarized in Table 18. As shown on Table 18, the existing plus project traffic exceeds the Caltrans thresholds at the northbound ramp in the PM peak hour. Although the intersection operates efficiently with the addition of the project using coordination software, a mitigation measure is proposed to provide an additional eastbound left lane and the project will pay a fair share of this improvement.

Project Impact on Road Surface on SR-76

As noted in prior traffic studies for the project and in the prior FEIR, a large percentage of heavy trucks associated with the landfill could degrade the structural integrity of SR 76. Caltrans staff have indicated that based on the 20-year life, a Traffic Index of 12.0, and soil types, the structural section of SR 76 in the project vicinity may require an increased asphalt concrete thickness for the travel way and shoulders. To mitigate this potential impact to a level of insignificance, mitigation measure 4.5-1 will be included requiring the project applicant to conduct a structural analysis of SR 76 and determine the structural requirements along SR 76 from the Rosemary Mountain Palomar Aggregates project to the proposed landfill entrance to determine whether the existing foundation can accommodate anticipated heavy truck loads. The applicant shall obtain certification from Caltrans for adequate pavement surface to be enforced by the County Department of Public Works. This analysis shall be extended west of the I-15 ramps if the Construction of the recommended pavement Palomar Aggregates project is not implemented. improvements, consistent with Caltrans requirements shall be implemented prior to operation of the landfill, if determined necessary, and a fair share contribution made by the applicant. With this mitigation measure, any potential impacts of project traffic on the surface of SR 76 will be mitigated to a level of insignificance.

	Table	17 - Exis	sting Plu	ıs Proj	Fable 17 - Existing Plus Project Freeway Segment Level of Service	ay Segm	ent Lev	el of S	ervice				
						Existing	Existing (No Project)	ect)		Existing (Plus Project)	(Plus Pr	oject)	
Interstate 15	#	Peak	Peak	Dir.	Truck							Incr.	
Segment Limits	Lanes	Capac	Hr. %	Split	Factor	ADT	V/C	ros	ADT	V/C	ros	V/C	Sign?
North of State Route 76	4	9200	7.35%	25%	10.23%	135000	0.654	С	135209	0.655	С	0.001	No
South of State Route 76	4	9200	6.82%	55%	8.14%	132000	0.582	В	133605	0.589	В	0.007	No
# Lanes = Number of lanes in one direction; Peak Capac = peak capacity in one direction Peak Hr % = peak hour percentage per ratio of peak hour versus average daily traffic (per Caltrans Traffic Volumes)	tion; Peak ratio of pea	Capac = pea k hour versu	k capacity i is average d	n one dira aily traffi	ection c (per Caltran	s Traffic Vol	umes)	:					
Dir. Split = directional split percentage of peak hour traffic traveling in peak direction; Truck Factor = influence of heavy vehicles	of peak ho	ur traffic tra	veling in pe	ak directi	on; Truck Fac	tor = influen	ce of heav	y vehicles					
ADT = average daily traffic; V/C = volume to capacity ratio per Caltrans District 11 methodology; LOS = Level of service A to F, including F(0) to F(3)	ume to cap	acity ratio po	er Caltrans l	District 1	I methodology	/; LOS = Lev	el of servi	ce A to F,	including F(0) to F(3)			
Sign? = significance? Yes or no; per City of San Diego thresholds	ty of San D	iego thresho	splo										
Calculation formula = ((ADT*PH%*Dir. Split)+Truck Factor) / Peak Capacity	ir. Split)+T	ruck Factor)	/ Peak Cap	acity									

Table 18 - Summa Caltr	ry of Existin ans Intersect				ation	
	Existing	Condition		Existing -	+ Project	
	AM Peak	PM Peak	AM Peak	AM Incr.	PM Peak	PM Incr.
Intersection	ILV	ILV	ILV	ILV	ILV	ILV
State Route 76/Highway 395	977	949	982	5	955	6
State Route 76/Interstate 15 South	1015	1152	1103	88	1256	104
State Route 76/Interstate 15 North	755	1479	843	88	1583	104

ILV=Intersecting Lane Volumes (Caltrans Methodology)

ILV Value = less than 1200 (Free Flow)

ILV Value = 1200-1500 (Acceptable Flow)

ILV Value = exceeds 1500 (Deficient Flow)

AM Incr ILV = AM peak hour increase in ILV value due to project

PM Incr ILV = PM peak hour increase in ILV value due to project

Project Impact Potential to Accident Rates on SR-76

As previously stated, the accident rate per million vehicle miles for SR-76 is higher than the State average for similar two lane highways. The rate of accidents on any segment of the State Highway is related to a variety of conditions and situations, no single criteria is the cause of a higher than average accident rate. The addition of traffic to a facility, in fact, will mathematically reduce the accident rate per million vehicle miles. As such, the addition of Gregory Canyon project traffic onto this facility does not have a significant impact on the accident rate.

NEAR TERM CUMULATIVE CONDITIONS

Intersections

Intersection operation for the Near Term Cumulative condition is summarized on Table 19. As shown on Table 19, the intersection of Interstate 15 Northbound/State Route 76 demonstrates a deficiency. This intersection requires an additional eastbound to northbound left turn lane and a westbound through lane. This is considered a cumulative impact and the project will participate in the County's TIF program to fully mitigate its cumulative impacts at intersections.

Peak Hour Roadway Segment Operation

Due to the volume of traffic attributable to the significant list of cumulative projects, the LOS D criteria for peak hourly operation on SR-76 would be exceeded and result in LOS E with these projects constructed and occupied during both the morning and evening peak hours as shown on Table 20. As such, the project is considered part of the cumulative deficiency and the need for improvements. The project is considered to have a cumulative impact on State Route 76 and will participate in the County's TIF program to fully mitigate its cumulative impacts on roadway segments.

Ta	ble 19 -	Near T	erm (Cumula	tive I	ntersect	ion Le	vel of Se	rvice S	ummary	7		<u> </u>
					AM PE	AK HOUR							
		Existi		Near T		Near Ter		Cı	ıml. Contr	ib.	Proje	ct Contrib	ution
Intersection		(A)) 	_(B)		(C	.)		(C)-(A)			(C)-(B)	Γ
	Crit.	Delay	LOS	Delay	LOS	Delay	LOS	Δ Delay	Cuml	Cuml.	Δ Delay	Proj	Proj
	Mvmt.	sec/veh		sec/veh		sec/veh			Traffic	Impact?		Traffic	Impact
SR-76/Old Highway 395	Int.	29.2	С	31.6	С	31.9	С	2.7	221_	N/A	0.3	10 _	None
SR-76/Interstate 15 South	Int.	20.1	С	34.1	С	44.0	C	23.9	630	N/A	9.9	78	None
SR-76/Interstate 15 North	Int.	21.1	С	42.0	С	44.1	D	23.0	766	N/A	2.1	88	None
	WB	N/A		N/A		10.3	В		739	N/A		98	None
.SR-76/Project Access	.SR-76/Project Access NB 20.9 C												
	<u> </u>				PM PE	AK HOUR							
SR-76/Old Highway 395	Int.	24.9	С	30.4	С	33.7	С	8.8	320	N/A	3.3	12	None
SR-76/Interstate 15 South	Int.	19.2	В	47.2	D	53.8	D	34.6	805	N/A	6.6	92	None
SR-76/Interstate 15 North	Int.	52.4	D	111.2	F	118.7	F	66.3	1156	Yes	7.5	104	Cuml.
OD 74/D in the American	WB	N/A		N/A		11.2	В		1121	N/A		116	None
SR-76/Project Access	NB					32.6	D						<u> </u>

Delay is measured in seconds per vehicle; Δ Delay=change in delay; LOS=level of service; N/A=not applicable to LOS D or better

Cuml Contrib=Cumulative Contribution represents change over existing conditions including all projects plus proposed project

Project Contribution=incremental change associated with proposed project (Near Term with Project less Near Term without project)

Cuml Impact=Cumulative Impacts associated with the addition of all cumulative projects including proposed project

Project Impacts represent whether the project is a considerable portion of the total cumulative impacts

Delay and LOS calculated using SYNCHRO/HCS; Crit. Mvmt = Critical Movement; WB=westbound, NB=northbound, etc.

Project significance based on County thresholds

					Table	6 20 -	Summs	ary of	Feak 1	Hour	Table 20 - Summary of Peak Hour Volumes on State Koute /o	S on S	tate K	onte /	٥					
					Redi	istribu	Redistributed - Near Term Cumulative Condition - 5,000 tpd	ear T	erm C	umula	tive Co	nditio	n - 5,0	00 tpd						
						l.		SR-76	Segment	(Redist	SR-76 Segment (Redistributed Project Traffic)	oject Tr	affic)							
		West	West of 105			I-15/Pankev	ankev			Pankey/Couser	Couser			Couser/Project	Project			East of Project	Project	
	Near				Near				Near	-			Near				Near			
Time	Term	ros	w/Proj	SOT	Term	ros	w/Proj LOS	ros	Term	ros	LOS w/Proj LOS Term LOS	ros	Term	SOT	w/Proj LOS	ros	Term LOS		w/Proj	ros
AM Peak	1452	田	1468	ш	1463	Э	1679	Ш	1480	Э	1696	H	1468	ы	1684	Э	1474	ш	1484	Е
PM Peak	2047	ш	2067	ш	2188	Э	2299	Э	2346	Э	2457	ш	2346	Е	2457	Э	2365	ш	2376	Е
Source: February 2005 Traffic Counts; Project Traffic of 1982 vehicles is 95% west oriented from 2085 total Peak Hour LOS D Maximum is 1316 Vehicles based on latest software version; LOS E Maximum is 2628 based on software	oruary 200 LOS D M	05 Traffi. laximum	c Counts;]	Project T ehicles b	raffic of 1	1982 vehi	icles is 95°	% west o	riented fr E Maxim	om 2085	total 28 based c	n softwa								

Ramp Operation

Ramp operation for the Near Term Cumulative condition is summarized on Table 21. As shown on Table 21, freeway ramps operate acceptably. No mitigation is required.

Caltrans Freeway Segments

Near Term Cumulative traffic on Interstate 15 segments north and south of SR-76 were analyzed with the Caltrans' Volume to Capacity methodology and are summarized on Table 22. As shown on Table 22, freeway segments operate acceptably and the project does not contribute significantly. No mitigation is required.

Table 21 - S	ummary o	f Near	Term Cui	nulatiy	e Ramp C	perati	on	
	Near	Term	No Project	t)	Near	Term	Plus Projec	t
	AM Po	eak	PM Pe	ak	AM Po	eak	PM Pe	ak
Ramp ID	Density	LOS	Density	LOS	Density	LOS	Density	LOS
SR-76/I-15 North On	19.6	В	20.6	С	19.6	В	20.6	С
SR-76/I-15 North Off	24.5	С	27.1	С	25	С	27.6	C
SR-76/I-15 South On	19.8	В	19.8	В	20	В	20	В
SR-76/I-15 South Off	23.2	С	23.4	С	23.3	C	23.4	С

Analysis performed with Highway Capacity Software (Merge/Diverge)

Density = Passenger Cars per lane per mile

LOS = Level of service defined by HCS output

Caltrans ILV Analysis

Caltrans ILV Analysis for the Near Term Cumulative condition is summarized in Table 23. As shown on Table 23, the near term traffic through intersections exceeds Caltrans values at the I-15 Northbound ramp with SR-76. This intersection can be mitigated with an additional eastbound left and westbound through lane. The project will make a fair share contribution for these lanes as described in mitigation measure 4.5-5. The I-15 Southbound ramp exceeds Caltrans numeric capacity, yet operates adequately using coordination software. No mitigation is recommended for the I-15 southbound intersection with SR-76.

Figure 10 graphically depicts the Caltrans ILV for SR-76/Highway 395. Figure 11 depicts the ILV for SR-76/Interstate 15 Southbound; and Figure 12 depicts the ILV for SR-76/Interstate 15 Northbound, with Figure 13 demonstrating the mitigation at the northbound ramp satisfies the Caltrans ILV methodology.

YEAR 2030 TRAFFIC CONDITIONS

Traffic volumes for the future condition are generated based on the County of San Diego's 2020 General Plan (which forecast 2030 traffic), using the Board Alternative Map - Existing Plus CIP Network and evaluated for consistency with the SANDAG series 10 model. This model was chosen over the Draft Land Use Map, due to the volumes in the Draft Land Use Map being significantly less than the Board Alternative, and less than the cumulative condition traffic volumes.

	T	able 22	- Near T	erm F	Table 22 - Near Term Freeway Segment Level of Service	egment L	evel of	Servic	e				
						Near Term (No Project)	m (No Pro	ject)	_	Near Term (Plus Project)	n (Plus F	roject)	
Interstate 15	#	Peak	Peak	Dir.	Truck					_		Incr.	
Segment Limits	Lanes	Capac	Hr. %	Split	Factor	ADT	N/C LOS	ros	ADT	V/C	ros	N/C	Sign?
North of State Route 76	4	9200	7.35%	25%	10.23%	138800	0.672	C	139009	0.673	С	0.001	No
South of State Route 76	4	9200	6.82%	55%	8.14%	139200 0.614	0.614	В	140805	0.621	В	0.007	No
# Lanes = Number of lanes in one direction; Peak Capac = peak capacity in one direction	tion; Peak	Capac = pea	k capacity i	n one dire	ction								
Peak Hr % = peak hour percentage per ratio of peak hour versus average daily traffic (per Caltrans Traffic Volumes)	ratio of pea	k hour versu	ıs average d	aily traffi	c (per Caltran	s Traffic Vol	umes)						
Dir. Split = directional split percentage of		ur traffic tra	veling in pe	ak directi	peak hour traffic traveling in peak direction; Truck Factor = influence of heavy vehicles	tor = influen	ce of heav	y vehicles					
ADT = average daily traffic; V/C = volum	ume to cap	acity ratio po	er Caltrans I	District 11	ne to capacity ratio per Caltrans District 11 methodology; LOS = Level of service A to F, including F(0) to F(3)	/; LOS = Lev	el of servi	ce A to F	, including F	(0) to F(3)	_		
Sign? = significance? Yes or no; per City	ity of San D	of San Diego thresholds	splo										
Calculation formula = ((ADT*PH%*Dir. Split)+Truck Factor) / Peak Capacity	ir. Split)+T	ruck Factor)	/ Peak Cap	acity									

Table 23 - Summa Calt	ary of Near To trans Intersec				ntion	
	Near Term	(No Project)]	Near Term V	With Project	t
	AM Peak	PM Peak	AM Peak	AM Incr.	PM Peak	PM Incr.
Intersection	ILV	ILV	ILV	ILV	ILV	ILV_
State Route 76/Highway 395	1137	1128	1141	4	1133	5
State Route 76/Interstate 15 South	1416	1667	1503	87	1771	104
State Route 76/Interstate 15 North	1151	2060	1336	185	2164	104

ILV=Intersecting Lane Volumes (Caltrans Methodology)

ILV Value = less than 1200 (Free Flow)

ILV Value = 1200-1500 (Acceptable Flow)

ILV Value = exceeds 1500 (Deficient Flow)

AM Incr ILV = AM peak hour increase in ILV value due to project

PM Incr ILV = PM peak hour increase in ILV value due to project

Compared to the current SANDAG Series 10 model, between the project and Pankey Road, both models are nearly identical. From Pankey to I-15, the SANDAG model shows only 24,000 vehicles whereas the County model (which includes land use densities on Pankey Road) shows 44,000 vehicles. This study uses the worst case volumes through the County model due to the input of all surrounding land uses which are not indicated within the SANDAG model.

Intersection volumes were generated by factoring near term cumulative volumes by similar increases to the forecasted daily traffic. The forecast shows nominal increase east of Couser Canyon Road (less than 3%), but an increase of 28% between Pankey and Couser Canyon; 114% between Pankey and I-15; 35% increase between I-15 and Highway 395, and 30% increase west of Highway 395. Traffic volumes for the future condition are summarized in Figure 14 (without project) and Figure 15 (including project).

Year 2030 Intersection Operation

Year 2030 intersection operation is summarized on Table 24. As shown on Table 24, all study intersections report deficiencies without improvement from the existing condition. The project is considered part of the cumulative need for future improvements and will participate in the County's TIF program to fully mitigate its future impacts at intersections.

AM PEAK = 977 ILV/HRPM PEAK = 949 ILV/HR

EXISTING

AM PEAK = 982 ILV/HRPM PEAK = 955 ILV/HR

EXISTING PLUS PROJECT

AM PEAK = 1,137 ILV/HRPM PEAK = 1,128 ILV/HR

NEAR TERM

AM PEAK = 1,141 ILV/HRPM PEAK = 1,133 ILV/HR

NEAR TERM PLUS PROJECT

LEGEND

XX/YY - AM/PM PEAK TURN VOLUMES

* - CRITICAL MOVEMENT

– – TRAVEL LANE

Darnell & associates, inc.

051008DD.dwg 2-20-07

CDJ/SN

FIGURE 10

SR-76 / HWY 395 - ILV ANALYSIS

Darnell & associates, inc.

051008DD.dwg 2-20-07

CDJ/SN

FIGURE 11
SR-76/I-15 SOUTH - ILV ANALYSIS

AM PEAK = 843 ILV/HRPM PEAK = 1,583 ILV/HR

EXISTING PLUS PROJECT

AM PEAK = 1,151 ILV/HRPM PEAK = 2,060 ILV/HR

NEAR TERM

AM PEAK = 1,336 ILV/HRPM PEAK = 2,164 ILV/HR

NEAR TERM PLUS PROJECT

LEGEND

XX/YY - AM/PM PEAK TURN VOLUMES

* - CRITICAL MOVEMENT

– TRAVEL LANE

Darnell & associates, inc.

051008DD.dwg 2-20-07

CDJ/SN

FIGURE 12 SR-76/I-15 NORTH - ILV ANALYSIS

AM PEAK = 742 ILV/HRPM PEAK = 1,320 ILV/HR

NEAR TERM

AM PEAK = 865 ILV/HRPM PEAK = 1,372 ILV/HR

NEAR TERM PLUS PROJECT

LEGEND

XX/YY - AM/PM PEAK TURN VOLUMES

- CRITICAL MOVEMENT

- - TRAVEL LANE

Darnell & associates, inc.

051008DD.dwg 2-20-07

CDJ/SN

FIGURE 13

MITIGATED - SR-76/I-15 NB
INTERSECTING LANE VOLUMES (ILV)

Table :	24 - Year 2	030 Plus	Projec	t Interse	ction]	Level of S	ervice Summa	ıry				
			AM	PEAK HOU	J R							
		2030 (No	Project)			Yea	r 2030 (With Project)				
	Crit	Delay		Delay			Max Critical	Proj	Proj.			
Intersection	Mvmt.	sec/veh	LOS	sec/veh	LOS	Δ Delay	Movement	Signif?	Impact			
SR-76/Old Highway 395	Int.	58.3	Е	59.2	Е	0.9	8	Yes	Cumulative			
SR-76/Interstate 15 South	Int.	108.8	F	118.8	F	10.0	79	Yes	Cumulative			
SR-76/Interstate 15 North	Int.	77.5	E	100.0	F	22.5	88	Yes	Cumulative			
SR-76/Project Access	WB	N/A		9.8	A		98 N/A None					
51. 7 00 - 1-3	NB			17.5	С							
PM PEAK HOUR												
SR-76/Old Highway 395	Int.	54.3	D	55.5	Е	1.2	10	Yes	Cumulative			
SR-76/Interstate 15 South	Int.	119.9	F	125.0	F	5.1	94	Yes	Cumulative			
SR-76/Interstate 15 North	Int.	160.3	F	170.1	F	9.8	104	Yes	Cumulative			
SR-76/Project Access	WB	N/A		10.3	В		116	N/A	None			
	NB			26.1	D							

Delay is measured in seconds per vehicle; LOS=level of service; Δ Delay=change in delay;

Max Critical Movement = maximum vehicles in single critical movement

Delay and LOS calculated using SYNCHRO; Int.=Intersection; EB=eastbound, NB=northbound

Proj Signif? = Project significance based on County of San Diego's Guidelines for Determining Significance

Year 2030 Roadway Segment Operation

Year 2030 intersection operation is summarized on Table 25 based on daily traffic analyses. As shown on Table 25, all study roadway segments report deficiencies without improvement from the existing condition. The project is considered part of the cumulative need for future improvements and will participate in the County's TIF program to fully mitigate its future impacts on roadway segments.

Year 2030 Ramp Operation

Ramp operation for the year 2030 is summarized on Table 26. As shown on Table 26, all ramps operate efficiently for the future condition. No ramp improvements are required.

Year 2030 Caltrans Freeway Segment Operation

Freeway segment operation for the future condition is summarized on Table 27. As shown on Table 27, freeway segments north and south of SR-76 are deficient with or without the project. The project is an insignificant portion of the traffic on freeway segments and is not required to mitigate the deficiency.

Year 2030 Intersecting Lane Volumes

Year 2030 ILV analysis is summarized on Table 28. As shown on Table 28, all intersections fail without improvement over the existing configurations. The project is part of the cumulative deficiency and will participate in the County's TIF program to fully mitigate its future impacts at intersections. Graphic depictions of the future ILV analysis are presented on Figure 16 (Highway 395); Figure 17 (Interstate 15 Southbound) and Figure 18 (Interstate 15 Northbound).

Table 25 - Ye	ar 2030 Roa	dway S	egme	nt Leve	el of Se	rvic <u>e</u>	Summary	
		Year 2	2030		Y	ear 2030	Plus Project	
	Maximum			Proj				
Roadway Segment	Capacity	ADT	LOS	Traffic	ADT	LOS	Significant	Impact
SR-76: west of Hwy 395	16200	31760	F	167	31927	F	Yes	Cumulative
SR-76: Hwy 395/I-15	34200	38000	F	167	38167	F	Yes	Cumulative
SR-76: I-15/Pankey	16200	42110	F	1980	44090	F	Yes	Cumulative
SR-76: Pankey/Palomar	16200	24040	F	1980	26020	F	Yes	Cumulative
SR-76: Palomar/Couser	16200	24040	F	1980	26020	F	Yes	Cumulative
SR-76: Couser/Gregory Cyn	16200	18580	F	1980	20560	F_	Yes	Cumulative
SR-76: east of Gregory Cyn	16200	18580	F	105	18685	F_	Yes	Cumulative

ADT=Average daily traffic; LOS=level of service

Project significance/impact based on County of San Diego's Guidelines for Determining Significance

Maximum Capacity per County of San Diego Public Road Standards

Table	e 26 - Sum	mary o	f Year 203	30 Ram	p Operati	on		
	Yea	r 2030 (No Project)	Year	2030 (V	Vith Projec	t)
	AM Po	eak	PM Pe	eak	AM P	eak	PM Pe	ak
Ramp ID	Density	LOS	Density	LOS	Density	LOS	Density	LOS
SR-76/I-15 North On	20.1	C	21.4	С	20.1	C	21.4	C
SR-76/I-15 North Off	24.7	С	27.3	C_	25.1	C	27.8	C_
SR-76/I-15 South On	20.2	С	20.2	С	20.4	C	20.4	C
SR-76/I-15 South Off	26	С	25.8	C	26	С	25.8	C

Analysis performed with Highway Capacity Software (Merge/Diverge)

Density = Passenger Cars per lane per mile

LOS = Level of service defined by HCS output

	Γ,	Fable 27	- Year 2	030 Fi	Table 27 - Year 2030 Freeway Segment Level of Service	gment Lo	evel of	Service	4)				
						Future	Future (no project)	ct)	:	Future (with project)	with pro	ject)	
Interstate 15	#	Peak	Peak	Dir.	Truck							Incr.	
Segment Limits	Lanes	Capac	Hr. %	Split	Factor	ADT	V/C	ros	ADT	N/C FOS	ros	V/C	Sign?
North of State Route 76	4	9200	7.35%	55%	10.23%	231000	1.119	F(0)	231209	1.120	F(0)	0.001	No
South of State Route 76	4	9200	6.82%	55%	8.14%	225000	0.992	E	226605	666.0	Э	0.007	No
# Lanes = Number of lanes in one direction; Peak Capac = peak capacity in one direction Peak Hr % = peak hour percentage per ratio of peak hour versus average daily traffic (per Caltrans Traffic Volumes) Dir. Split = directional split percentage of peak hour traffic traveling in peak direction; Truck Factor = influence of heavy vehicles ADT = average daily traffic; V/C = volume to capacity ratio per Caltrans District 11 methodology; LOS = Level of service A to F, including F(0) to F(3) Sign? = significance? Yes or no; per City of San Diego thresholds	ction; Peak ratio of pea of peak ho lume to cap ity of San I	Capac = pea k hour versu ur traffic tra acity ratio p iego thresh	k capacity i us average d veling in pe er Caltrans I olds	n one dire aily traffi ak directi District 1	c (per Caltran on; Truck Fac I methodologi	s Traffic Vol tor = influenc ;; LOS = Lev	umes) ce of heav el of servi	y vehicles ce A to F,	including F((0) to F(3)			
Calculation formula = ((ADT*PH%*Dir. Split)+Truck Factor) / Peak Capacity	ir. Split)+T	ruck Factor	/ Peak Cap	acity									

Table 28 - Sun Caltra	=		ntersection Volumes (IL			
	Year 20 Proj)30 (No		Year 2030 (V	Vith Project)
	AM Peak	PM Peak	AM Peak	AM Incr.	PM Peak	PM Incr.
Intersection	ILV	ILV	ILV	ILV	ILV	ILV
State Route 76/Highway 395	1424	1394	1429	5	1400	6
State Route 76/Interstate 15 South	1957	2307	2047	90	2409	102
State Route 76/Interstate 15 North	1583	2799	1750	167	2903	104

ILV=Intersecting Lane Volumes (Caltrans Methodology)

ILV Value = less than 1200 (Free Flow)

ILV Value = 1200-1500 (Acceptable Flow)

ILV Value = exceeds 1500 (Deficient Flow)

AM Incr ILV = AM peak hour increase in ILV value due to project

PM Incr ILV = PM peak hour increase in ILV value due to project

TRAFFIC NEEDS ASSESSMENT STUDY

Darnell & Associates has reviewed and evaluated the accuracy and reliability of traffic data contained in the March 2003 Tribal Study as ordered by Judge Anello. This review has included an evaluation of traffic data in the 2003 Tribal Traffic Study with data and evaluations contained in this traffic report.

In March 2003 the County released a Tribal traffic study entitled "Traffic Needs Assessment of Tribal Development Projects In The San Diego Region" (Tribal Traffic Study). This traffic analysis was based upon traffic volumes that were obtained from the 2000 traffic flow map for the San Diego Metropolitan area prepared by SANDAG and the San Diego County Master Traffic Census prepared by the County Department of Public Works. Estimations for casino operations were then added to these baseline conditions based upon the assumption that gaming facilities would result in 100 average daily trips for each 1000 square feet of gaming area and the further assumption that each hotel room would generate 3 trips per room. The analysis assumed complete build-out of all Tribal projects and adjusted trip distribution assumptions in order to account for build-out of the County's Circulation Element roadway system

The 3 tribal projects used in analyzing traffic impacts to SR 76 in the Tribal Traffic Study were the Pala, Pauma and Rincon gaming and resort project. This study assumed that the Pala Reservation would generate 7,550 daily trips, the Pauma Reservation would generate 4,000 daily trips, and the permanent Rincon Reservation facilities would generate 6,500 daily trips. The Tribal Traffic Study determined that SR 76 east of I-15 was operating at an acceptable LOS B condition under existing baseline conditions and determined that SR-76 would be operating at an acceptable LOS A through C condition when each of the Pala, Pauma and Rincon projects were added to baseline traffic. However, the study concluded that portions of SR 76 would operate below LOS D based upon both near term cumulative and 2020 cumulative traffic conditions on SR 76.

There are a number of factors that make the 2003 Tribal Traffic Study less reliable than this current traffic study and it should not be relied upon to accurately determine existing traffic conditions on SR 76 or cumulative traffic conditions. The Tribal Traffic Study was based upon projected traffic conditions on SR 76 using a 2000 traffic flow map. By contrast, the enclosed traffic study is based upon actual counts

AM PEAK = 1,424 ILV/HRPM PEAK = 1,394 ILV/HR

YEAR 2030 - NO PROJECT

AM PEAK = 1,429 ILV/HRPM PEAK = 1,400 ILV/HR

YEAR 2030 PLUS PROJECT

LEGEND

XX/YY - AM/PM PEAK TURN VOLUMES

CRITICAL MOVEMENT

- TRAVEL LANE

Darnell & associates, inc.

051008DD.dwg 2-21-07

CDJ

FIGURE 16
INTERSECTING LANE VOLUMES (ILV)
SR-76 / HIGHWAY 395

AM PEAK = 2,047 ILV/HRPM PEAK = 2,409 ILV/HR

YEAR 2030 PLUS PROJECT

LEGEND

XX/YY - AM/PM PEAK TURN VOLUMES

- CRÍTICAL MOVEMENT

- - TRAVEL LANE

Darnell & associates, inc.

051008DD.dwg 2-21-07

CDJ

FIGURE 17
INTERSECTING LANE VOLUMES (ILV)
SR-76 / I-15 SOUTH

AM PEAK = 1,750 ILV/HRPM PEAK = 2,903 ILV/HR

YEAR 2030 PLUS PROJECT

LEGEND

XX/YY - AM/PM PEAK TURN VOLUMES

* - CRÍTICAL MOVEMENT

- TRAVEL LANE

Darnell & associates, inc.

051008DD.dwg 2-21-07

CDJ

FIGURE 18
INTERSECTING LANE VOLUMES (ILV)
SR-76 / I-15 NORTH

taken in March 2005. These more recent traffic counts are far more accurate in determining actual existing traffic conditions on SR 76 than the projections based upon 2000 traffic flow data contained in the Tribal Traffic Study. In projecting future casino traffic on SR 76, the Tribal Traffic Study made assumptions about trips generated by casino operations. New traffic counts incorporate actual data which include existing traffic on SR 76 generated by the operational Pala, Pauma and Rincon gaming and resort projects. Accordingly, the actual count data currently includes traffic generated by these operational casino projects. That is far more accurate than the assumptions made to support future projections of traffic on SR 76 contained in the Tribal Traffic Study. In addition, the 2003 Tribal Traffic Study assumed ultimate build out of the Pala, Pauma and Rincon gaming and resort projects. Ultimate build out of these projects has not yet occurred but will occur over time as these projects are ultimately completed.

The Highway Capacity Manual (HCM) bases the evaluation of service levels on two-lane highways such as SR-76 on the number of vehicles per any given hour and not upon a general traffic load per day. The Tribal Traffic Study did not utilize the Highway Capacity Manual in determining levels of service on SR-76 based upon peak hourly conditions as prescribed in the HCM. This traffic study properly utilizes criteria contained in the HCM in assessing the operational characteristics of SR-76.

The cumulative traffic conditions on SR-76 were evaluated in the Tribal Traffic Study based upon older Series 8 SANDAG projections. Subsequent to this study, SANDAG approved the more recent Series 9 and Series 10 SANDAG forecasts that incorporate more recent land use plans and development constraints into their modeling assumptions. The Series 8 projections contained in the Tribal Traffic Study are no longer reliable since SANDAG has now adopted far more recent models to use in regional transportation planning and forecasting. The 2003 Tribal Traffic Study was not based upon a careful evaluation of cumulative projects and did not consider changing land use patterns caused by the County's current processing of General Plan 2020 that will significantly reduce the intensity of land use development in some of the non-urban areas of the County including areas surrounding SR-76.

The cumulative traffic conditions contained herein are far more reliable; since they are based upon a recent list of projects undergoing processing that would impact SR-76 and are based upon a 2030 cumulative analysis that considers changes currently being made as part of the County's 2020 General Plan process and the newer and more accurate SANDAG Series 10 Model. For these reasons, the above traffic study is more reliable than the Tribal Traffic Study which should not be relied upon to accurately assess either existing or future cumulative traffic conditions on SR-76 or other area roadways.

SECTION V - ACCESS, INTERNAL CIRCULATION, OFF-SITE CIRCULATION

PROJECT ACCESS

The proposed access road is approximately 1.1 miles east of Couser Canyon Road and will travel south from SR-76, cross the San Luis Rey River and turn easterly to reach the landfill site. The applicant proposes to widen and realign SR-76 on either side of the access road for a distance of approximately 1,700 feet to provide acceleration and deceleration to/from the project driveway. Sight distance will be improved to provide a minimum of 1,000 feet in both directions. No vegetation or structures will obstruct this minimum sight distance. No changes to the conceptual striping plan have been implemented from previous plan submittals to the County. A copy of the conceptual plan is provided in Appendix K.

The project access was analyzed for level of service utilizing the above assumptions for lane configuration, including one lane for egress. Both morning and evening peak periods will achieve acceptable levels of service D or better under the worst-case future conditions traffic volumes and does not require signalization or other additional improvements.

Although not required by the capacity analysis, a traffic signal may ultimately be implemented at this location for reasons other than capacity. As such, traffic signal warrants were conducted at the project access for the near term cumulative condition. The intersection of SR-76/Project Access meets the following warrants (warrants available in Appendix J).

Minimum Vehicular (80%) Interruption of Continuous Traffic (100%) Combination (80%) AM Peak Hour (100%) PM Peak Hour (100%)

INTERNAL CIRCULATION

The applicant proposes to construct a bridge over the San Luis Rey River and to provide a two lane road for access to/from the landfill and to/from the topsoil stockpile/borrow areas. D&A reviewed the proposed internal circulation plan and found them to be adequate for the purposes of the landfill without creating unnecessary conflicting movements and supplying adequate turning radii for large vehicles.

OFF-SITE CIRCULATION

The project now includes the purchase and delivery of recycled water from the Olivenhain Municipal Water District (Olivenhain). Olivenhain has executed a contract with the project applicant to provide all water necessary for project construction and operation. This recycled water would be delivered to project recycled water trucks at Olivenhain's Santa Fe Valley Reservoir and Pump Station site (the "Reservoir Site") located near the intersection of Artesian Road and Maranatha Drive west of I-15. The recycled water would be delivered to water trucks at this location and then trucked to the landfill site using I-15 and SR 76 east of the project site. A regional location map showing the location of Olivenhain's recycled water site is provided on Figure 19 and Figure 19A is an aerial of the Reservoir Site.

Darnell & associates, inc.

051008-BB.dwg 4-28-06

CDJ

FIGURE 19
REGIONAL LOCATION MAP

AERIAL OF RESERVOIR SITE FIGURE 19A

> Darnell & ASSOCIATES, INC. 6

051008-BB.dwg 4-28-06

Sources of water available to the project include groundwater on the project site outside the Pala Basin derived from percolating groundwater through fractured bedrock and recycled water purchased and delivered by Olivenhain. The maximum expected daily project demand for water is 205,000 gallons per day during peak periods that need water for both construction and operation of the project. On-site wells derived from percolating groundwater have the ability to supply approximately 38,880 gallons per day of this demand. However, in order to assess project traffic on Maranatha Drive based upon worst-case conditions, it has been assumed that all 205,000 gallons per day of water needed for the project is purchased and delivered as recycled water from Olivenhain with these truck trips utilizing Maranatha Drive for pickup and delivery.

Recycled water trips for the project will utilize I-15 to Camino del Norte which transitions to Camino del Sur and then turn right on Maranatha Drive to access Olivenhain's delivery site. Camino del Norte is a six-lane divided road from Bernardo Center Drive to Dove Canyon, and four-lanes divided from Dove Canyon to Rancho Bernardo Road. West of Rancho Bernardo Road, Camino del Sur operates as a two-lane roadway with left turn pockets at intersections to Bernardo Lakes. East of Bernardo Lakes, Maranatha Drive travels north of Camino del Sur. Portions of Camino del Norte are within the City of San Diego jurisdiction and portions are within the County of San Diego jurisdiction. Camino del Sur is completely within the City of San Diego. The north end of Maranatha Drive is within the County while the southern end is within the City.

Currently, Camino del Sur and Camino del Norte is under construction to build these facilities to their ultimate classifications. Camino del Sur is being constructed to 4-lane major standards and Camino del Norte is being improved to six-lane prime arterial standards. Additionally, Caltrans is currently implementing improvements to the I-15 corridor and interchange ramps at Camino del Norte as part of the I-15 Managed Lanes project, scheduled for completion in 2008 to add auxiliary lanes.

In order to assure that drivers will utilize this route, we recommend the project implement a project design feature that drivers use only the following roads: Maranatha Drive, Camino del Norte between Maranatha Drive and I-15, I-15 between Camino del Norte and SR-76, and SR-76 east of I-15 and the landfill access road.

MARANATHA SCHOOL

The Reservoir Site is located on the east side of Maranatha Drive. A new school is currently operating on the west side of Maranatha Drive known as the Maranatha School. A major use permit for this school was approved by the County of San Diego on February 11, 2004. The major use permit permits a Christian school and church consisting of classroom buildings, a chapel, and various buildings on a 22.5 acre site located on the west side of Maranatha Drive. The major use permit permits a maximum of 2000 students for grades kindergarten through high school. Phase 1 of the school will accommodate 900 students for grades kindergarten through high school. Phase 2 build out projected in the year 2020 permits an additional 1100 students for a total of 2000 students.

Conditions of approval imposed by the County of San Diego on the Maranatha School project require the dedication of Maranatha Drive as a public road with a right-of-way width of 60' plus slope rights and drainage easements. The conditions of approval for the Maranatha School project also require the widening and paving of Maranatha Drive to 40' of paved width and 60' of graded width.

Based on peak daily project water demand of 205,000 gallons per day loaded on 2300-gallon trucks results in 89 worst-case recycled trucks utilizing Maranatha Drive on a daily basis. Utilizing the PCE factor of 1.5 and 2-way trips results in approximately 267 daily trucks utilizing Maranatha Drive for the delivery of recycled water assuming that all water provided to the project is recycled water. To avoid any

potential safety impacts to students, parents, or teachers at the Maranatha school, it is recommended that recycled water trips using Maranatha Drive will be prohibited during the period from when school opens from 6:45 to 8:15 AM and at the end of the school day from 2:30 PM to 4:45 PM. During the remaining 7.5 hours of project operations, hourly truck traffic would be approximately 12 trucks per hour. With 2-way trips and PCE conversion factor of 1.5, this equates to approximately 36 PCE trips per hour. An additional 20 2-way trips are expected per day for personnel of Olivenhain and the Rancho Santa Fe CSD to access and utilize their respective facilities adjacent to Maranatha Drive. This results in total maximum daily traffic demand on Maranatha Drive of 4717 daily trips (4430 trips for the Maranatha school project + 267 peak daily trips for pickup and delivery of recycled water + 20 additional daily trips for public agency personnel).

As noted previously, the conditions of approval on the Maranatha school and church project require the widening of Maranatha Drive to 40' of paved surface on 60' of graded width. It is presently anticipated that these road improvements will be completed within the next 6 months. Based on the County's roadway capacity thresholds, a 40' paved roadway on 60' of graded width is capable of accommodating a maximum LOS D threshold of 10,900 daily vehicles. Maximum daily trips on Maranatha Drive for the Maranatha school project, recycled water trips for the project and public agency personnel is 4717 daily trips. This equates to LOS C traffic flow conditions on Maranatha Drive under worst-case expected traffic conditions at build out of the Maranatha School project. With the improvements required on Maranatha Drive for the Maranatha school and church project, Maranatha Drive is able to accommodate peak traffic demand expected and will maintain adequate service levels under County standards. The addition of recycled water trucks for the project does not create a deficit condition and no additional roadway improvements or widening is required on Maranatha Drive.

CITY OF SAN DIEGO ANALYSIS SCOPE

The City of San Diego requires traffic analyses of all intersections within the City's jurisdiction where the project contributes 50 or more peak hour trips in any direction. The recycled water trucks generate a maximum of 36 peak hour passenger car equivalent (PCE) trips (two-way), or 18 PCE trips in any one direction through intersections. As such, analysis of off-site intersections is not required by the City of San Diego as the recycled water trucks do not meet City thresholds.

For roadway segments, the City of San Diego identifies project impacts where the project increases the daily traffic analysis volume to capacity (v/c) ratio by more than 2% on segments which demonstrate LOS E or worse conditions.

EXISTING AND BUILDOUT CONDITIONS

For the purposes of identifying levels of service and traffic densities in the project vicinity, the Maranatha School and Church Traffic Impact Study (July 6, 2001) prepared by Katz, Okitsu & Associates was utilized. Excerpts from this study are included in Appendix J. As stated previously, Camino del Norte, Camino del Sur, Interstate 15 and interchange ramps are currently under construction for ultimate general plan classifications.

To determine existing conditions, the near term conditions including traffic from Phase I of the Maranatha School development described in the 2001 Katz, Okitsu study were utilized. Both Camino del Norte and all intersections, including the intersections of Camino del Norte and I-15, operate at an acceptable conditions of LOS D or better. However, I-15 between Pomerado Road and Carmel Mountain Road operate at unacceptable conditions of LOS F(0) and F(1).

To evaluate impacts from the project, the analysis focused on the 2020 buildout with and without project condition to demonstrate worst case traffic volumes with the addition of the proposed project's recycled water trips.

Roadway Segments

Future 2020 buildout with and without project roadway segment traffic densities were obtained from the Katz, Okitsu study. Table 29 summarizes the daily roadway capacity analysis. As shown on Table 29, all roadway segments operate at LOS C or better with or without the project. The project does not meet significance criteria for City or County jurisdictions and is considered to be an insignificant portion of future traffic volumes.

Table 29 - Water	Route Buil	dout Road	Iway S	egme	nt Lev	el of Se	rvice S	umm	ary		
			,	Buildout	t		В	uildout I	Plus Proje	ect	
Roadway Segment	Class	Maximum	ADT	LOS	V/C	Proj	ADT	LOS	V/C	V/C	Signif?
		Capacity	ADI	103	V /C	Traffic	ADI		V/C	Incr.	Signii:
Camino del Norte:											
I-15 SB/Bernardo Center [1]	6-Prime	60000	48300	С	0.805	267	48567	С	0.809	0.004	No
Bernard Ctr/Cam San Bernardo [1]	6-Prime	60000	44000	С	0.733	267	44267	С	0.738	0.004	No
Cam San Bernardo/Dove Cyn [2]	6-Prime	57000	25400	В	0.446	267	25667	В	0.450	0.005	No
Dove Canyon/4S Parkway [2]	6-Prime	57000	28700	В	0.504	267	28967	В	0.508	0.005	No
4S Pkwy/Rancho Bernardo Rd [2]	4-Major	37000	25800	С	0.697	267	26067	С	0.705	0.007	No
Camino del Sur:											
Rancho Bernardo/Four Gee [1]	4-Major	40000	25600	С	0.640	267	25867	С	0.647	0.007	No
Four Gee/Maranatha [1]	4-Major	40000	22800	С	0.570	267	23067	С	0.577	0.007	No
Maranatha/West Loop Road [1]	4-Major	40000	8300	A	0.208	0	8300	A	0.208	0.000	No
Maranatha Drive:											
North of Camino del Norte [2]	2-Collector	16200	4450	C	0.275	267	4717	С	0.291	0.016	No

ADT=Average daily traffic; LOS=level of service; V/C=volume to capacity ratio

V/C Incr. = increase to volume to capacity ratio due to project

[1]=City of San Diego jurisdiction; [2]=County of San Diego jurisdiction

Maximum Capacity per County of San Diego Public Road Standards or City of San Diego where applicable

Signif?=significance yes or no, based on City or County standards where applicable

Intersection Operation

Intersection operation for the 2020 buildout with and without project condition was obtained from the Katz, Okitsu study (Table 11, Summary of Buildout Intersection Performance, copy attached). As identified in the approved study, all intersections along the water truck route operate at LOS D or better at buildout. The project does not meet minimum City or County thresholds for impacts (less than 50 trips in a single direction for the City and less than 20 critical movement trips within the County).

Therefore, the project is considered to be an insignificant portion of the buildout traffic volumes at intersections along the water facility truck route.

Freeway Segments

A freeway segment analysis was conducted for I-15 from Pomerado Road to Carmel Mountain Road. Table 30 summarizes the results of the freeway analysis using the Caltrans Volume to Capacity ratios. As shown on Table 30, freeway segments are anticipated to fail in the 8 lane configuration; however, the project is an insignificant portion of the future volumes and is not considered to have a significant impact on the mainline freeway. However, since the project incrementally adds traffic to this unacceptable level of service, it is treated as a significant impact for purposes of this traffic study.

	Table	30 - Bu	ildout	Freew	ay Segi	ment Le	evel of	Servi	ce				
						Buildou	ıt (no pr	oject)		Buildou	t (with p	roject)	
Interstate 15	#	Peak	Peak Hr. %	Dir.	Truck	A D/T	YVG	100	A POTE	N/C	1.00	Incr.	G: 0
Segment Limits	Lanes	Capac	90	Split	Factor	ADT	V/C	LOS	ADT	V/C	LOS	V/C_	Sign?
Pomerado Rd/Rancho Bernardo	4	9200	8.70%	58%	9.20%	252100	1.510	F(3)	253705	1.520	F(3)	0.010	No
Rancho Bernardo/Bernardo Ctr	4	9200	8.80%	59%	9.20%	248500	1.531	F(3)	250105	1.541	F(3)	0.010	No
Bernardo Ctr/Camino del Norte	4	9200	8.80%	59%	9.20%	246000	1.516	F(3)	247605	1.526	F(3)	0.010	No
Camino del Norte/Carmel Mtn	4	9200	8.80%	61%	9.20%	249200	1.588	F(3)	250805	1.598	F(3)	0.010	No

[#] Lanes = Number of lanes in one direction; Peak Capac = peak capacity in one direction

Peak Hr % = peak hour percentage per ratio of peak hour versus average daily traffic (per Caltrans Traffic Volumes)

Dir. Split = directional split percentage of peak hour traffic traveling in peak direction; Truck Factor = influence of heavy vehicles

ADT = average daily traffic; V/C = volume to capacity ratio per Caltrans District 11 methodology; LOS = Level of service A to F, including F(0) to F(3)

Sign? = significance? Yes or no; per City of San Diego thresholds

Calculation formula = ((ADT*PH%*Dir. Split)+Truck Factor) / Peak Capacity

SECTION VI - TRAFFIC DESIGN FEATURES & MITIGATION MEASURES

TRAFFIC DESIGN FEATURES

The following traffic design features are recommended as part of the project to minimize traffic impacts:

- SR 76 will be improved at the access road as shown on Exhibit 3-6 of the FEIR to provide adequate width for the eastbound deceleration lane and a westbound turn lane to improve sight distance per Caltrans requirements. The improvements, which are approximately 1700 linear feet, will realign SR 76 to the south of the existing alignment and will widen the roadway to 52 to 64 feet.
- The installation of a traffic signal at the intersection of SR 76 and the landfill access subject to the approval of Caltrans.
- Recycled water trucks will be prohibited from using Maranatha Drive from 7:30 to 8:30 a.m. and from 2:00 to 3:00 p.m. daily while the Maranatha school is in session.
- If not installed to the satisfaction of the County, City and/or School District by the Maranatha School project, non-regulatory signage will be posted on Maranatha Drive cautioning drivers about the school activities and the presence of children.
- In order to assure that drivers utilize Maranatha Drive, Camino del Norte between Maranatha Drive and I-15, I-15 between Camino del Norte and SR-76 and SR-76 east of I-15 and the landfill access road, the project will include in any trucking contract the requirement that the drivers utilize these routes.

TRAFFIC MITIGATION MEASURES

A number of traffic mitigation measures have been adopted or are recommended to minimize traffic impacts associated with the project. These mitigation measures are identified below:

• Project traffic could worsen sections of poor surface along SR 76 from Interstate 15 to the project access. To mitigate this impact to a level of insignificance the project applicant will conduct a structural analysis of SR 76 and determine the structural requirements along SR 76 from the Rosemary Mountain Palomar Aggregates project to the proposed landfill entrance to determine whether the existing foundation can accommodate anticipated heavy truckloads. The applicant shall obtain certification from Caltrans for adequate pavement surface to be enforced by the County Department of Public Works. This analysis shall be extended west of the I-15 ramps if the Palomar Aggregate project is not implemented. Construction of the recommended pavement improvements, consistent with Caltrans requirements shall be implemented prior to operation of the landfill, if determined necessary, and fair share contribution made by the applicant.

- If total project traffic exceeds 2,085 PCE trips per day or 675 total trucks from all sources, segments of SR 76 east of I-15 will be adversely impacted by the proposed project and exceed the acceptable LOS D criteria. To ensure the project traffic does not adversely impact the LOS D condition on SR 76 east of I-15, total project traffic from all sources on any day shall not exceed 2,085 PCE trips or a maximum of 675 trucks from all sources. When the project equals 2,085 PCE trips or 675 trucks in any day, the project shall be shut down for the balance of the day.
- With the addition of project peak hour traffic between the hours of 2:00 p.m. and 5:00 p.m., SR-76 east of I-15 will be adversely impacted by the proposed project and exceed the acceptable LOS D criteria. To achieve an acceptable LOS D condition on SR-76 east of I-15 during the project's peak afternoon hours from 2:00 p.m. to 5:00 p.m., project traffic shall be limited to a total of 215 PCE trips or 72 trucks between the hours of 2:00 p.m. and 3:00 p.m., a total of 111 PCE trips or 37 trucks between the hours of 3:00 p.m. and 4:00 p.m., and a total of 111 PCE trips or 37 trucks between the hours of 4:00 p.m. and 5:00 p.m. daily. Once the project has reached these maximum allowable trips or trucks in any of these peak hours or meets the maximum tonnage, project operation shall close down for the balance of the peak hour affected.
- In order to ensure project compliance with the daily limits on traffic and the peak trips permitted between the hours of 2:00 p.m. and 5:00 p.m., the landfill shall implement the following measures upon commencement of operations:
- (1) Once 95% of the maximum daily traffic limit is reached, the landfill operator shall immediately notify commercial waste haulers to curtail waste deliveries as needed to assure compliance with the maximum daily traffic limits. Notwithstanding the above, the landfill operator may not refuse acceptance of any waste collection vehicle that was traveling on SR 76 east of I-15 at the time notice was given.
- (2) Each contract for waste delivery at the landfill shall notify the customer of the peak hour traffic restrictions, shall require that the customer cooperate in good faith in scheduling deliveries to adhere to peak hour restrictions, and shall implement a notification system whereby the customer would be directed to use alternative disposal facilities as needed to assure compliance with the peak hour traffic restrictions.
- (3) Compliance with peak hour traffic restrictions shall be monitored on the inbound lane of the landfill access road at a location as near as feasible to SR 76. Vehicle trips will be counted manually or, if feasible, electronically, and where appropriate converted into PCE. If electronic measurement methods are incorporated, and if feasible, electronic traffic counts shall be made available to the Department of Environmental Health at its offices on a real-time basis. The landfill operator shall report traffic count information to the Department of Environmental Health weekly in writing.
- (4) Once 75% of the peak hourly restriction is reached, the landfill operator shall immediately notify commercial waste haulers to curtail waste deliveries, pursuant to the contract arrangements described above, as needed to assure compliance with the peak hour traffic restrictions. Notwithstanding the above, the landfill operator may not refuse acceptance of any waste collection vehicle that was traveling on SR 76 east of I-15 at the time notice was given

- SR 76 west of I-15 currently operates in an unacceptable LOS E condition with and without project traffic. At the commencement of operation, the project applicant shall pay the County's Transportation Impact Fee to fund its fair share of improvements on the segment of SR 76 west of I-15.
- I-15 between Pomerado Road and Carmel Mountain Road currently operates in an unacceptable LOS F(0) or F(1) condition with and without project traffic. At the commencement of operation, the project applicant shall pay the County's Transportation Impact Fee to fund its fair share of improvements on this segment.
- For the existing plus other development plus project scenario, the I-15/SR 76 northbound ramp will be adversely impacted by the proposed project and exceed the acceptable LOS D criteria. At the commencement of operation, the project applicant shall make a fair-share contribution for the addition of a eastbound left turn lane and westbound thru lane on the I-15 over crossing.
- The project contributes to cumulative impacts on SR-76 that will cause SR-76 to operate below the acceptable LOS D standard or contribute incrementally to an unacceptable condition with or without project traffic. At the commencement of operation, the project applicant shall pay the County's Transportation Impact Fee (TIF) to fund its fair share of cumulative impacts to SR-76 and the intersections.
- The project contributes to cumulative impacts on I-15 between Pomerado Road and Carmel Mountain Road and will contribute incrementally to a predicted LOS F(3) condition with or without project traffic. At the commencement of operation, the project applicant shall pay the County's Transportation Impact Fee (TIF) to fund its fair share of cumulative impacts to SR-76 and the intersections.
- The project shall make an irrevocable offer of dedication for right-of-way to 108 feet in width within the Project boundary for the widening of SR-76 to four lanes by the County of San Diego Circulation Element, including a designated bike route.
- The project shall ensure that the structural integrity of Maranatha Drive is sufficient to accommodate the trucks associated with transportation of recycled water to the landfill site. The project shall conduct a structural integrity test on the Maranatha Drive pavement to determine ultimate load bearing of the roadway. If necessary, the project shall provide the required pavement overlay to support the heavy vehicle loads that would occur on Maranatha Drive. Any necessary repaving or construction along Maranatha Drive shall be done outside of the operation of the school (i.e., weekends or school breaks) so as to not disrupt school activities.

CUMULATIVE IMPACTS

The project will participate in the County's TIF program to fully mitigate all cumulative and future impacts to roadway segments and intersections based on current County fees.

SECTION VII - SUMMARY OF FINDINGS & CONCLUSIONS

- The proposed Gregory Canyon landfill is located approximately 3.5 miles east of Interstate 15 on State Route 76. The Gregory Canyon site is planned to contain approximately 30 million tons of refuse with an operating life of about 30 years. Maximum trip generation for this site was estimated at 2,085 daily trips, which includes truck traffic converted into passenger car equivalents (PCEs).
- The project access will provide for acceleration/deceleration lanes and adequate shoulders along SR-76 for approximately 1,700 feet. This improvement will also assure a minimum sight distance of 1,000 feet in both directions. Vegetation or structures will not obstruct this minimum sight distance.
- An update of Accident Data was conducted and showed that while the traffic volumes have increased significantly on SR-76, accident rates per million vehicle miles are consistent with previous studies. Based on the comparison of primary collision factors, the data continues to show that alcohol, driver violations, and excessive speed are the major causes of accidents on SR-76. The data does not show an increase in volumes or trucks is related to the accident rate which is consistent with previous conclusions.
- Existing conditions traffic analyses determined that all study intersections operate acceptably with traffic signals. No deficiencies at intersections were reported.
- A peak hour analysis of SR-76 was conducted in accordance with Congestion Management Program (CMP) Guidelines throughout the operation of the facility from 7:00am to 6:00pm. The peak hour analysis demonstrated LOS D conditions along SR-76 from I-15 to the project site within this time frame. With the addition of project peak hour traffic determined that the project has a direct impact on SR-76 between the hours of 2pm-5pm. As mitigation for this impact, it is recommended that the project reduce its peak hour truck traffic within the hours of 2pm-5pm. This mitigation is easily monitored by the facility as it records all traffic and tonnage throughout the day.
- Other known projects which significantly affect this corridor were identified and incorporated into the near term analysis where appropriate. Impacts at intersections due to other project traffic were identified at the SR-76/Interstate 15 Northbound Ramp. This is the result of cumulative project contributions and requires near term improvements with or without the proposed project. The project is considered to have a cumulative impact on this intersection and will participate in the County's Traffic Impact Fee (TIF) program to fully mitigate all cumulative and future circulation needs.
- State Route 76 west of I-15 is deficient during peak hours with or without project traffic. The project will participate in the County's Traffic Impact Fee (TIF) program to fully mitigate circulation needs along State Route 76.
- State Route 76 continues to report deficiencies with the addition of cumulative projects and the proposed project. The project will participate in the County's Traffic Impact Fee (TIF) program to fully mitigate all cumulative and future circulation needs along State Route 76.

- A year 2030 traffic projection was conducted using the County of San Diego's General Plan 2020 Model, Board Alternative Map, Existing Plus CIP Network, for generating traffic volumes. Analysis was conducted for a "no build" (or existing) condition. Year 2030 "no build" analyses report failing level of service on SR-76 and its intersections from Highway 395 to I-15, as well as signalized intersections at the I-15 ramps and Old Highway 395. The project will participate in the County's Traffic Impact Fee (TIF) program to fully mitigate all cumulative and future circulation needs.
- Recycled water trucks accessing the Olivenhain Water District facility are able to be accommodated on Maranatha Drive. It is recommended the project install non-regulatory cautionary signs to warn of school activities and the presence of children if not adequately supplied by the Maranatha School.
- Recycled water trucks do not have a significant impact on Maranatha Drive, Camino del Norte/Camino del Sur and I-15 between Pomerado Road and Carmel Mountain Road. However, this I-15 segment continues to report deficiencies with the addition of cumulative projects with or without project traffic.

APPENDIX A
Traffic Counts
Vertical Grade Profile
Speed Surveys
Accident Reports

W

DATE: 3/3/2005

LOCATION: City of Fallbrook

E-W STREET: Pala Rd.

DAY: THURSDAY

PROJECT#

	N	ORTHBO	DUND	S	оитнво	UND	E	ASTBOU	ND	V	VESTBOL	IND	
LANES:	NL 0	NT 2	NR . 0	SL 0	ST 1	SR 0	EL 1.	ET 2	ER 0	WL 1	WT 2	WR 1	TOTAL
6:00 AM				-								-	
6:15 AM													
6:30 AM		3											
6:45 AM				198									
7:00 AM	18	27	14	73	14	10	7	134	16	15	100	30	458
7:15 AM	27	39	21	87	16	9	9	142	20	12	114	26	522
7:30 AM	18	22	13	64	32	18	10	150	5	19	133	28	512
7:45 AM	9	23	9	57	21	8	12	133	8	11	137	29	457
8:00 AM	15	28	5	54	18	7	15	113	13	2	122	20	412
8:15 AM	15	16	3	65	22	11	13	135	9	15	144	19	467
8:30 AM	19	20	8	49	23	20	8	103	8 -	6	145	26	435
8:45 AM	9	18	4	42	27	11	14	159	17	5	124	23	453
9:00 AM													
9:15 AM				9			*						
9:30 AM													
9:45 AM		1					ř				- 3		
10:00 AM							260			20		1.0	100
10:15 AM	R												
10:30 AM	20								*				
10:45 AM				9							.00		
11:00 AM													
11:15 AM					200		- 5						
11:30 AM	6	*						(a = 1)			12.0		*
11:45 AM		i)											
OTAL .	NL	NT	NR	SL	ST	SR	EL	ET,	ER	WL	WT.	WR	TOTAL
OLUMES =	130	193	77	491	173	9,4	.88	1069	96	85	1019	201	3716
	*:			·)		,	•			•		8	F:
AM Pea	ak Hr Be	gins at:	700	AM					195				
EAK				224									
	72	111	57	281	83	45	38	559	49	57	484	113	1949
OLUMES =	1/2		1										
OLUMES = EAK HR.	/2												27
OLUMES = EAK HR. ACTOR:	/2	0.690			0.897			0.944			0.908		0.933

N-S STREET:

DATE: 3/3/2005

LOCATION: City of Fallbrook

E-W STREET: Pala Rd.

DAY: THURSDAY

PROJECT#

×4	N	ORTHBO	UND	S	ОИТНВО	UND	E	ASTBOL	JND	V	VESTBO	UND	
LANES:	NL 0	NT 2	NR 0	SL 0	ST 1	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 1	TOTAL
1:00 PM 1:15 PM 1:30 PM 1:45 PM 2:00 PM 2:15 PM				Q , 1					e ²			145	,
2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM						ar.	8	e u			ē		
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	9 8 15 11 15 15 12 13	26 24 24 23 30 25 25 21	6 4 6 6 10 6 8 9	45 54 58 39 69 62 44 48	14 19 18 15 14 14 15 18	15 17 13 11 19 11 11	10 21 21 17 13 9 17	172 172 174 162 159 158 151 129	10 12 14 12 10 5 15 16	5 15 8 7 6 7 11 6	184 148 166 160 168 172 175 143	53 68 77 69 49 76 59	549 562 594 532 562 560 543 477
6:00 PM 6:15 PM 6:30 PM 6:45 PM									* **				
TOTAL VOLUMES =	NL 98	NT 198	NR 55	SL 419	ST . 127	SR 114	EL 124	ET 1277	ER 94	WL 65	WT 1316	WR 492	TOTAL 4379
PM Peal	k Hr Be	gins at:	415	PM	×	147		8 K j	3 ,	es T	ra .		
PEAK /OLUMES =	49	101	26	220	66	60	72	667	48	36	642	263	2250
PEAK HR.		0.800			0.848	~	160	0.941	* *		0.937		0.947
CONTROL:	signalize	ed			19			ž					

N-S STREET: I-15 SB Ramps

DATE: 3/3/2005

-LOCATION: City of Fallbrook

E-W STREET: Pala Rd.

CONTROL: signalized

DAY: THURSDAY

PROJECT#

	1			Ų.					300				
	NC	RTHBO	UND	S	OUTHBO	UND	E	ASTBOL	IND	W	ESTBOL	JND	
LANES:	NL 0	NT 0	NR . 0	SL .5	·ST .5	· SR 1	EL 0	ET 1	ER 1	WL 1	WT 1	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM										W 1			
6:45 AM 7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM	le le	8		39 33 50 33 31 38 37 36	3	116 97 117 87 68 79 76 86		115 119 145 115 122 91 116 95	99 87 87 92 98 82 86 77	19 32 24 29 19 26 19 18	68 73 76 61 58 69 64 67	****	456 441 499 417 396 385 398 379
10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:00 AM 11:15 AM 11:30 AM 11:45 AM			2			£	n e a		3			E .	a ,
OTAL OLUMES =	NL 0	NT 0	NR- 0	SL 297	ST 0	\$R 726	EL 0	ET 918	ER 708	WL 186	WT 536	WR 0	TOTAL 3371
AM Pea	l k Hr Beç	gins at:	700	AM			ı	,	15	į.			ı
EAK OLUMES =	0	0	0	155	·0	417	0	494	365	104	278	0	1813
EAK HR. ACTOR:		0.000			0.856			0.926			0.910		0.908
		- ii				20							

N-S STREET: I-15 SB Ramps

DATE: 3/3/2005

E-W STREET: Pala Rd.

DAY: THURSDAY

	N	ORTHBO	UND	SC	ОИТНВО	UND	· E	ASTBOU	IND	W	ESTBOL	IND	
LANES:	NL O	. NT 0	NR 0	SL .5	ST .5	SR 1	EL . 0	ET 1	ER 1	WL 1	WT 1	WR 0	TOTAL
1:00 PM 1:15 PM 1:30 PM 1:45 PM				(9)								E 10	
2:00 PM 2:15 PM 2:30 PM 2:45 PM						*			¥				
3:00-PM 3:15 PM 3:30 PM 3:45 PM	1.25 10		* ************************************	* **	£1			*			(5)		
4:00 PM 4:15 PM 4:30 PM 4:45 PM	n 1			48 56 45 43		89 86 101 77	£	172 181 141 153	69 . 76 . 54 . 51	59 30 32 31	163 140 139 165		569 512 520 574
5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM				50 32 32 40		102 87 72 73	**	181 144 161 161	62 56 65 44	33 28 29 23	146 157 113 178		504 472 519
6:15 PM 6:30 PM 6:45 PM			55			-		ESSE I	i.				
TOTAL VOLUMES =	NL 0	NT 0	NR 0	SL 346	ST 0	SR 687	EL 0	ET 1294	ER 477	WL 265	WT 1201	WR 0	TOTAL 4270
PM Pea	k Hr Be	gins at:	400	PM				, a					
PEAK VOLUMES =	0	0	0	192	0	353	0	647	250	152	607	0	2201
PEAK HR. FACTOR:		0.000			0.933			0.873			0.855		0.917
CONTROL:	signaliz	red									40		

N-S STREET: .I-15 NB Ramps

DATE: 3/2/2005

LOCATION: City of Fallbrook

E-W STREET: Pala Rd.

DAY: WEDNESDAY

PROJECT#

05-3059-003

	//=										Ji	34	X.
	- N	ORTHBO	DUND	S	OUTHBO	UND	-	EASTBO	UND	٧	VESTBOL	JND .	
LANES:	NL .5	NT .5	NR 1	SL 0	ST 0	SR 0	EL 1	ET 1	ER 0	WL 0	WT 1	WR 1	TOTAL
6:00 AM	-						-	-					
6:15 AM													
6:30 AM				8									
6:45 AM							,		1.0				
7:00 AM	45		12				94	46			40	11	248
7:15 AM	50		28				102	60			48	16	304
7:30 AM	42		23				88	72			44	15	284
7:45 AM	59		23				103	70			49	20	324
8:00 AM	68		38				70	47			32	12	267
8:15 AM	48		34				97	53			32	20	284
8:30 AM	43		33				83	58			47	12	276 -
8:45 AM	48		25				99	69			32	10	283
9:00 AM	.0						23	03			22	10	200
9:15 AM							38						
9:30 AM								20					e 15
9:45 AM													
10:00 AM												35	
10:15 AM			50										
10:30 AM			*						70				
10:45 AM						100			14				
11:00 AM								- 8					
11:15 AM													
11:30 AM						74							
11:45 AM	* .												
OTAL .	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	- WR-	TOTAL
OLUMES =	403	0	216	0	0	0	736	475	0	0	324	116	2270
				Ť									-
AM Pea	k Hr-Be	egins at:	715	AM								- 13	
EAK				- 5	(91)								
OLUMES =	219	0	112	0	0 -	0	262	240	0	1 0	177	63	1179
OLUMES =	219	U .	112	U	U -	U	363	249	. 0	0	173	03	11/.9
EAK HR.			22										
		0.781	20		0.000	100		0.884			0 000		0.910
ACTOR:		0.701	I	- DE	0.000		Ţ	0.004		1	0.855		0.910
ONTROL		and											

CONTROL:

signalized

N-S STREET: I-15 NB Ramps

DATE: 3/2/2005

LOCATION: City of Fallbrook

E-W ST . EET: . Pala Rd.

DAY: WEDNESDAY

PROJECT# 05-3059-003

			ž.										
		NORTHBO	UND	SC	OUTHBO	UND	E	EASTBOL	JND	V	VESTBO	JND	
LANES:	. NI		NR 1	SL 0	ST 0	SR 0	EL 1	.ET	ER 0	WL 0	WT 1	WR 1	TOTAL
1:00 PM 1:15 PM 1:30 PM		-									9		
1:45 PM 2:00 PM 2:15 PM 2:30 PM	3 3								E				
2:45 PM 3:00 PM 3:15 PM 3:30 PM			891	e i							8		
3:45 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	10: 13: 10: 98 12: 13:	1 1 3 5.	54 34 34 43 42 49	149		×	188 130 116 144 126 121 122	97 60 60 74 55 67 62			136 107 100 119 96 70 88	41 38 34 30 25 30	618 499 453 508 468 475 464
5:45 PM 6:00 PM 6:15 PM 6:30 PM 6:45 PM	106	5	39	ř			123	73	263		61	16	418
TOTAL /OLUMES =	932		NR 344	SL 0	ST 0	SR 0	EL 1070	ET 548	ER 0	WL 0	WT 777	WR 232	TOTAL 3903
PM Pe	eak Hr	Begins at:	400	PM		æ		2					
PEAK OLUMES =	439	0	165	0 .	Q	0	578	291	0	Ö	462	143	2078
EAK HR. FACTOR:		0.921			0.000			0.762			0.855		0.841
CONTROL:	signa	lized					31		a.			341	

M Period	NB		SB	EB		WE			PM Period	NB	SB	Warra State	EB		WE		
00:00			C-58-30	. 26		63	*		12:00	- Hotel		and the state of	164		172	COLUMN TO SECTION	
00:15				21		47			12:15				155		172		
00:30				19		36			12:30				151		151		
00:45				26	92	40	186	278	12:45				157	627	177		1299
01:00				20		29	-		13:00		-		168		184		
01:15				23	×.	20			13:15	¥:			154		173		
01:30	÷			20		27			13:30				153		180		
				20	83	33	109	192	13:45				194	669	195		1401.
01:45			-		0.5		103	132					-	009	-	******	. 1401:
02:00				18		25	100		14:00			- 2	167		212		
02:15				14		17			14:15				185		207		
02:30				14		28		1.12	14:30				198		212		
02:45		-		6	52	27	97	149	14:45			11-	201	752	188		-1571
03:00			2	14		16			15:00				214		205		
03:15				15		24			15:15				196		233		
03:30				14		24			15:30				227		232		
03:45				12	55	37	101	- 156	15:45	(230	867	233	903	1770
04:00				11		24			15:00				206		272		
04:15				24		47			16:15				206 220		226		
04:30				38		62			16:30				250		242		
04:45				39	112	74	207	319	16:45				189	865	255	995	1860
05:00	-		7	49		97			17:00				214	-	242		2300
05:00				69		120			17:00				234		228		
05:30			$\overline{\mathcal{M}}$	92	227	146	530	967	17:30				178	040	240 200	010	1750
05:45				127	337	167	530	867	17:45				214	840	100	910	1750
06:00			*	114		171		90	18:00			8	183		248		
06:15				151		184			18:15				180		195		
06:30				201		188			18:30				155		189		
06:45				175	652	192	735	1387	18:45				163	681	153	785	1466
07:00				170		212			19:00				131	•	138		29.1
07:15				217		210			/19:15			7	102		112		
07:30				217		180			19:30				109		91		
07:45			- 5	198	802	200	802	1604	19:45				105	447	101	442	889
08:00				239		185		2.	20:00				103		119		
08:15				165		190			20:15				73		103		
08:30				202		165			20:30				86		89		90
08:45				165	771	194	734	1505	20:45				81	343	70	381	724
	-	-			112		/21	1303	41.049.1				-	373	_	201	14.
09:00				202		175			21:00	40			74		82		
09:15				162		165			21:15				69		74		
09:30				172		162			21:30				93	Commercial Co.	82		
09:45				190	726	179	681	1407	21:45				65	301	70	308	609
10:00				183		178			22:00				69		69		
10:15				195		156		(1)	22:15				59		56		
10:30				179		162			22:30				66		57		
10:45				162	719	149	645	1364	22:45				55	249	63	245	494
11:00			(%)	185		142			23:00		- 19		32		50		
11:15				154		184			23:15			-	35		51		
11:30				169		154			23:30				39		44		
11:45				179	687	141	621	1308	23:45				25	131	44	189	320
			-		-					N LINE	The second second		- Comme		-		
tal Vol.	N.T				5088		5448	10536			100			6772		7381	14153
				204	+				14				D	aily To	otals	043.60	
									14	NB		SB		EB .		WB	Combine
								577						11860		12829	24689
					AM									PM	1		
plit%	27-11-				48,3%	457	51:7%	42.7%		* × -		N.F.	74	47.8%		52.2%	57.3%
		17,	7.00			41 - 1	1.						in		1,00		
	9.5		10 m	£7/14	07:15	. F. X.	0020	07:15			2277 31 32		2.	15:45		16:00	15:45
ak Hour	17.		age a	-		12.		***			12.12		-				

Location:	Pala Rd	btwn	Pankey	Rd &	I-15
-----------	---------	------	--------	------	------

AM Period NB	SB	E		W	В		PM Period	NB	SB	E	3	W	В	
00:00		9		57			12:00			108	3	77		
00:15		9		65			12:15			112		84		
00:30		15		30			12:30			100		10		
00:45		19		32	194	246	12:45	24		117				796
01:00		19		. 28			13:00	-						7.50
01:15		15	6	22						104		82		
							13:15		5000	103		77		
01:30		12		24			13:30			106		102		
01:45		13		20	94	154	13:45			119	432	92	353	785
02:00		14	ž.	23			14:00			179	į.	106	5	
02:15		12		16			14:15	2		138		107		
02;30		13		28			14:30			137		124		
02:45	. 80 3	19		22	89	147	14:45			141		102		984
03:00		17		16			15:00	7.	-					304
03:15		15								136		- 104		
100 miles				22			15:15			135		130		
03:30		15		14		122	15:30			131		136		
03:45		11	58	20	72	130	15:45	E.		140	542	134	504	1046
04:00		15		14			16:00			128		156	;	
04:15		1		15			16:15			108		135		
04:30		10		14		27	16:30			117		148		
04:45		8	34	26	70	104	16:45			121	474	126		1020
05:00										75.05	47.4			1039
05:15		13		22			17:00			111		153		
		19		27			17:15			117		123		
05:30		27	(5)	34			17:30	(F. 18)		. 87		107		
05:45		36	95	42	125	220	17:45			93	408	100	483	891
06:00		43		44			18:00	16		91		95		
06:15		42	*	55		X1.	18:15			105		94		
06:30		51	- 6	56			18:30			100		94		
06:45		65	201	78	233	434	18:45	09		88	204		707	74.
			701		200	737					384	74	357	741
07:00		74		68			19:00			73		76		
07:15		78		72			19:15	167		71		72		
07:30		83		84			19:30			60		57		
07:45		83	318	66	290	608	19:45	-		57	261	50	265	526
08:00		91		82			20:00			53		69	9.1	
08:15		-89		72			20:15			50		41		
08:30		91		71			20:30			46		58		
08:45		86	357	69	294	651	20:45			47	196	48	216	412
			307			001			-		190		210	412
09:00		93		86			21:00			50		50		
09:15		99		70			21:15			53	80	48		
09:30		87		78		97.	21:30			47		54		
09:45		. 86	365	80	314	679	21:45		6	45	195	56.	208	403
10:00		97		85			22:00			41		48		
10:15		108		88			22:15			39		38		
10:30		104		78	94		22:30							
10:45		114	423	72	324	747	22:45			40		50	100	220
			72		32.4	/7/				37	157	46	182	339
11:00		77		60 -			23:00			33		35		
11:15		97		72			23:15			27		41		
11:30		72		71			23:30			29		50		
11:45		97	343	68	271	614	23:45			31	120		161	281
tal Voi.			2364		2370	4734					4151	melosee	4092	8243
			50									خاب		
T .	= 0							NB	SB	ם	aily To	1912	WB	Combined
				*				.10	20					
											6515		6462	12977
Name of the original and the original an			AM				Special		2		PM			
olit %			49.9%		50:1%	36.5%			*1		50.4%		49:6%	63.5%
KHour		**	10:00		09-30	10:00				2 20 V	14.15	+	ALLEY TO WHISH LAD	
IK HOUL	3	green'				10:00		80	- 8 - E.J	wit.	14:15.	11141	15:45	15:15
olume P.P.E.			423:		332 0.94	747		1	i i i i i i i i i i i i i i i i i i i		552		573 -	0.96

Project #: 05-3060-007

ak Hour			m, H	.10:00		11:45	11:45		£.			10 to	15:15:		15:30	15:30
olit %				54,9%		45.1%	35.4%		1 10-				49.6%		50.4%	64.6%
1.			a nare	AM		0311		0.8		-	w.	177	7217 PM	2001	6799	14016
					V.n.					NB	SB		aily To	tals	WB	Combine
tal Vol.			12	2725		2235	4960		v.				4492	1-1	4564	9056
11:45			. 119	415	68	287	702	23:45				43	133	44	202	335
11:30			104		81		in without	23:30			*	22	9	60		
11:15			99		83			23:15			KIT.	33		47		
11:00	27.	5	93	*	55		10	23:00				35		51		101
10:45			134	514	65	262	776	22:45				. 46	184	56	202	386
10:30			144		58			22:30		10		46		46		
10:15			130		65			22:15				38		32		
10:00			106		74			22:00				54	2	68		
09:45			101	404	65	251	655	21:45		_		55	217 -	54	193	410
09:30			86		67		-	21:30				60		54		
09:15			121		66			21:15				47		44		
09:00			96		53			21:00				55		41		
08:45			84	389	69	265	654	20:45	-	-		47	215	48	215	430
08:30			100	200	57	200		20:30				50		59		0.00
08:15			97		66			20:15				64		58		*
08:00			108		73			20:00				54		50		
07:45		-	95	362	39	238	600	19:45		-		60	263	60	286	549
07:30	* *****		96	262	72	770	600	19:30				69	767	78	200	540
07:15								19:15			4	57 50		74		
07:00			.83		54											
	-		88	- 10	73			19:00				67		74	220	701
06:45			83	245	68	200	445	18:45				89	406	82	358	764
06:30			73		43			18:30				100		7.7		
06:15			37		49			18:15				120		101		
06:00		1	52		40			18:00				97		98		
05:45		1	40	118	28	113	231	17:45				97	421	112	557	978
05:30			38		22			17:30				84		130		
05:15			23		36			17:15				130		161		
05:00			17		27			17:00		24		110		154		
04:45			12	51	26	80	131	16:45			51	139	515	125	574	1189
04:30			12		20			16:30				136		161		
04:15			15		15			16:15				106		169		
04:00	0.00	+	12		19			16:00	12		t	134	1,00	219		
03:45			12	41	20	107	148	15:45				167	581	142	566	1147
03:30			5		33			15:30			38	150		166		
03:15			12		28			15:15			5 1	138		131		
03:00			12		26			15:00				126		127		
02:45			22	67	26	109	176	14:45				154	577	122	508	1085
02:30			. 15	lg000	27	E. exa	120	14:30				141		182		
02:15			15		25			14:15				128		109		
02:00			15		31			14:00			8.2	154		95		
01:45			13	63	23	123	186	13:45			-	133	493	134	416	909
01:30			14	2 50-411-	36	9.000	0.000	13:30				114		112		
01:15			18		20			13:15				123		54		
01:00			18		44	61		13:00				123		106	7	
00:45			20	56	59	200	256	12:45			-	133	487	118	387	874
00:30	14		16		24	200	200	12:30				109		128	30.7	
00:15			9		67			12:15				110		76		
00:00		- 12	11		50			12:00				135		55		
00.00																

Location: Pala Rd btwn Course Canyon ar	d James I	n
---	-----------	---

	NB	SB	E		W	Ď.	-	PM Period	NB	SE	-	EB	MINISTERNATION OF	W	3	EDVIDOUS CONTRACTOR
00:00		WINDS TO SEE	. 9		62		Second Francisco	12:00			THE PERSON NAMED IN	128		55	P. Against Annual Street, Stre	
00:15		14	11		44			12:15				112		108		
00:30	*		17		47			12:30				108	1	127		
00:45	Z.		20		55		265	12:45				121	469	97		856
01:00			23		40			13:00			-	131	-	74		
01:15			18		38			13:15				123		88		
01:30			15		36		10	13:30				108		132		
01:45			15		34		219	13:45				139	501	111		906
							445			-			301			300
02:00		1917	22		26			14:00				170		88		
02:15			18		26			14:15				119		157		
02:30			16		31		200	14:30				130		132		
02:45			28	84	33	116	200	14:45		-		157	576	121		1074
00:50			15		-28			15:00				124		131		
03:15			14		41			15:15				143		159	ê	20
03:30			6		26			15:30				144		156		.50
03:45			14	49	. 23	118	167	15:45				146	557	186	632	1189
04:00			15		21			16:00				140		166		
04:15	72		14		22			16:15				111		149		
04:30			16		25			16:30				130		159		
04:45			18	63	23	91	154	15:45					- 507	134		1115
05:00			12		34			17:00			0.07.0		201			4440
05:15			21		29			17:15				106		192		
05:30			47						Ü.			132		121		
05:45			47	127	25 38	126	253	17:30 17:45		¥.		72 97	407	121		007
				12/		120	233		-	-			407	96	530	937
06:00			- 62		34			18:00				85		102		
06:15			49		46			18:15				109		78		
06:30			70	177.0004	64			18:30				82		79		
06:45		-	101	282	71	215	497	18:45			-	85	361	70	329	690
07:00	55		94		48			19:00				65		79		
07:15			. 87	- 0	66			19:15				64		67		
07:30	9.		110		64	2		19:30				66		54		
07:45			89	380	59	237	617	19:45				56	251	51	261	512
08:00			108		68			20:00				53		65		
08:15			107		60			20:15				63		47		
08:30			84		52			20:30				51		59		
08:45	4		89	388	67	247	635	20:45				40	207	42	213	420
The state of the s				200		241	000					-	207		213	420
09:00		- 1	101		59			21:00				47		44		
09:15			117		56			21:15				50		58		
09:30			91		66			21:30				54		48		
09:45			100	409	80	261	670	21:45	-			59	210	67	217	427
10:00			115		62			22:00	17.			51		39		
10:15			120		53			22:15				36		43		
10:30			150		64			22:30			120	40		43-		
10:45			128	513	69	248	761	22:45	=			51	178	56	181	359
11:00			97		66			23:00	-21111			34		40		
11:15			94	9	84			23:15		e .	. 57	35		56	3	
11:30			138		77			23:30	500	6		21		62		6
11:45			117	446	106	333	779	23:45			1	44	134	48	206	340
	Committee of the last	Est-Youtest (Konsp		-	-				1		-		Cale Control	-	DESCRIPTION OF THE PARTY OF THE	
tal Vol.		2:		2869		2348	5217						4358		4467	8825
									NB		SB	Da	aily To	cais	WB	Combined
									110	-	30				120572	
2.													7227	0.51	6815	14042
				AM 55.0%			37.2%		-				PM 49:4%		5.	
olit.%	1.0										23 27 70				50:6%	62:8%

Pala Proninance

Volumes for: Thursday, March 17, 2005

City: Fallbrook

Project #: 05-3107-001

Location: SR-76 (Pala Rd)	btwn Jamies Way and Pala Del Norte Rd
---------------------------	---------------------------------------

AM Period	NB	SB	EE		W			PM Period	NB	SB	EB		WE	3	
00:00			23		50	6		12:00			107		91		
00:15			15		53			12:15			127		95		
00:30			10		46	l.		12:30			127		97		
00:45		20	11		46		254	12:45			114				826
01:00			9		46			13:00			94		110		
01:15			11		50			13:15			105		96		
01:30			11		52			13:30			158		100		
01:45			12		20		211	13:45			112				876
02:00			13		41			14:00			114		78	107	9/0
02:15			19		34			14:15			123				
02:30			11		28			14:30					125		
02:45			10	53	46	149	202	14:45			139 106		96	416	200
03:00		*****	. 5		38			15:00	-			404	117	-	898
03:15	9		4		. 25			15:15			115 95		138		
03:30			. 7		19			15:30					107		
03:45			9	25	25	108	133	15:45			135 137	482	147 116	508	990
04:00			6		15			16:00				102		300	330
04:15			11		21			16:15			127 135		108		
04:30			9		26			16:30			140		111		
04:45			23	49	30	92	141	16:45			122	524	108	420	ACC.
05:00			27		26			17:00				344		430	954
05:15			24		42			17:00			124		81		
05:30			58		43			17:15			138		101		
05:45			51	170	49	160	330	17:30			161	cae	97	200	acaro.
06:00			47	2/0	48	200	200	18:00			173	596	86	365	961
06:15			43		51						148		59		
06:30	100		75		52			18:15			146		87		
06:45			59	224	63	214	438	18:30 18:45			154	- Company	82	744	
07:00				227		217	730				129	577	86	314	391
07:15			72		63			19:00			99		66		
07:30			71		77			19:15			104		73		
07:45			95	220	61	757	501	19:30			67		66		11000000
Total Care			91	329	51	252	581	19:45			66	336	56	261	597
08:00 08:15			74		36			20:00			55		43		
08:30			90		79			20:15			78		88		
08:45			98 76	338	70 75	760	500	20:30	70		53	255	72		
7				220		260	598	20:45			53	239	61	264	503
09:00 09:15			104		56			21:00			40		63		12
			98		68			21:15			53		67		
09:30 09:45			115	420	71	250	600	21:30			38	200	45		
			122	439	55	250	689	21:45			40	171	92	267	438
10:00			107		66			22:00			35		214		
10:15			111		74			22:15	-		37		170		
10:30			112	400	81	20-	-	22:30			44		108		
10:45			131	461	75	296	757	22:45			35	151	103	595	746
11:00			122		89			23:00			12		107		
11:15			132		58			23:15			37		89		
11:30			131	02020	89 ~	202	204	23:30			26		62		
11:45		-	115	500	82	318	818	23:45			22	97	78	336	433
tal Vol.				2690		2462	5152					4599		4514	9113
									NR	SB		aily To	tals	WE	Combine

 Daily Totals

 N8
 SB
 EB
 WB
 Combined

 7289
 6976
 14265

				7289	6976	14265
- E	. AM			PM		
Split %.	52.2%	47.8% 36.1%		50.5%	49.5%	63.9%
Peak Hour	10:45	11:45 11:45		17:30	22:00	15:30
Volume P.H.F.	516 0.98	365 841A - 10	(A 10-A)	628 0.91	595 0.70	1016

Bather Belrose Boj TREET 4 Blk. SR76 L TMITS W/O PANKEY RD	CATION 4 to E/O BRIDGE	am .
RECTION(S)EB+WB TE7/27/99 ME1300 STED SPEED LIMIT55	50TH PERCENTILE SPEED. 85TH PERCENTILE SPEED. 10 MPH PACE SPEED. PERCENT IN PACE SPEED. PERCENT OVER PACE SPEED.	
CUM. EED NO. PCT. PCT.	PERCENT UNDER PACE SPE RANGE OF SPEEDS. VEHICLES OBSERVED.	
2	AVERAGE SPEED	
4 0 0.0 2.0 100	+	++
5 1 1.0 3.0 -	********	**************
6 3 3.0 6.0 90	***	-
7 6 6.0 12.0 C	***	90
8 7 7.0 19.0 U 80	2 2	
9 10 10.0 29.0 M -	*	80
0 9 9.0 38.0 70	*	-
1 10 10.0 48.0 P - *		- 70
2 7 7.0 55.0 E 60		
3 12 12.0 67.0 R - *		60
1 10 10.0 77.0 C 50 *		-
5 4 4.0 81.0 E -		50
5 7 7.0 88.0 N 40 *		-
7 3 3.0 91.0 T -	.*	40
1 1.0 92.0 S 30 *		10 TO
2 2.0 94.0 -		30
	181	-
0 0 0		20
27.0 10		10
>0.0 - ^^	10	10
0.0 30.0 0		0
	++	++
1 1.0 99.0 42 52	62 72	82 02
T+	++	
1 1.0 100.0 20		20
-		. 20
-		9 <u>=</u> 0
#	9	_
D 1 E	84	-
P 15 E -	95	. 15
R -	e .	
C -	2 2	
E+	4	_
N 10 * * * *	2	-
m		10
a a a a a a a a a a a a a a a a a a a		
	and the state of t	=
- *****	*	-
- ****** 5 ******	*	=1
5 ******	*	5
- ************************************		_
******		:
_** ******	** * *	· ·
+	A(2)	-
,	-++	++

Bather Belrose Boje, Inc. SPEEDPLOT Program		
REET 3 Blk. SR76 LOCATION 3 MITS WITHIN 20 MPH CURV to	(100)	
FORT DEPOSITIE SPEED	25	(3)
RECTION(S)	27 n 28 93.0	
PERCENT OVER PACE SPEED PERCENT UNDER PACE SPEED	0.0	
VEHICLES ORSERVED	TOO	None
PEED NO. PCT. PCT. AVERAGE SPEED	27.0	
9 4 4.0 4.0	-+	
10 4 4.0 8.0 +	**100) Elea
21 6 6.0 14.0 100	90	關
**	- 90	,
13 13.0 47.0 C	80	O N
25 15 15.0 62.0 U 80 *	-	
26 16 16.0 78.0 M -	70	0
27 10 10.0 88.0 70 28 5 5.0 93.0 P -	-	0
*	- 01	0 10
29 3 3.0 96.0 E 60 30 1 1.0 97.0 R -	5	0
31 2 2.0 99.0 C 50	-	1
32 0 0.0 99.0 E - *	4	0
33 0 0.0 99.0 N 40 .	-	0 =
34	- 3	0
35 1 1.0 100.0 S 30 **	2	0
20	6 12	
_ *	1	.0
10 *	-	0
0		0
++++++	69	
19 29 39 49 59		
+++		20
20	-	H
-	_	
- ·		PATRICAL
*		15
P 15 **	-	v
E - **	-	1
R - ***	_	-
E - * ***	2650	10,
N 10 * ****	-	- 1
T - *****	***	
S - *****	-	f
_ *****	-	5
5 ******	-	. –
_*****	_	N.
_*****	-	
-******* * (A3)	-	
+++	+	
representation to g S		

Bather Belrose Boje	, Inc. SPEEDPLOT Program OCATION 2
IMITS EAST OF 20MPH	CURV to
:=====================================	50TH PERCENTILE SPEED
1 1.0 2.0 ++	+++
17	*************************
9 4 4.0 13.0 90	
0 6 6.0 19.0 C * 1 17 17.0 36.0 U 80 *	90
2 12 12.0 48.0 M -	80
3 13 13.0 61.0 70 * 4 7 7.0 68.0 P -	70
5 10 10.0 78.0 E 60 *	-
6 7 7.0 85.0 R - 7 4 4.0 89.0 C 50 *	60
7 4 4.0 89.0 C 50 * 8 6 6.0 95.0 E -	50
9 1 1.0 96.0 N 40	4.0
0 2 2.0 98.0 T - * 1 1.0 99.0 S 30	40
2 0 0.0 99.0 -	3.0
3 1 1.0 100.0 20 *	20
10 *	-
- *	1.0
0**	0
25 35	45 55 65 75
++ 20	-++
	. 20
- *	
- *	, "
P 15 * E - *	15
R - * *	
C - ***	
E - *** N 10 *** *	ž = = = = = = = = = = = = = = = = = = =
T - *** *	10
S - *** *	
****** *	26 Sair
5 ****** * - * *******	5
- *******	-
- ************************************	* (A14)
++	+++

Bather	Relrose Boie	Inc. SPEEDPLOT	Program	
TREET	Blk. SR-76 LC	CATION 1	rrogram	,
IMITS V				
			a	. 8
IRECTION(S)EB	+WB	50TH PERCENTILE		
ATE	27/99	85TH PERCENTILE 10 MPH PACE SPE	SPEED	
OSTED SPEED LIMIT55	.00	PERCENT IN PACE		
Oblina arma arma		PERCENT OVER PAG	CE SPEED	
	1	PERCENT UNDER PA		
CUM.		RANGE OF SPEEDS		
PEED NO. PCT. PCT.		VEHICLES OBSERVI AVERAGE SPEED		
29 1 1.0 1.0	9	AVERAGE DELLED		
30 0 0.0 1.0	++		++	
31 0 0.0 1.0 10	0		*****	*******100
32 0 0.0 4.0	-	****		90
33 0 0.0 1.0 9 34 1 1.0 2.0 C	0	XX X		90 .
35 1 1.0 3.0 U 8		*		80
36 6 6.1 9.1 M	### ### ### ### ### ### ### ### ### ##	* -		-
	0	4	*	70
38 5 5.1 18.2 P 39 12 12.1 30.3 E 6	-	4		60
39 12 12.1 30.3 E 6 40 9 9.1 39.4 R	-			
	io +			50
42 12.1 61.6 E	-		A	-
43 11 11.1 72.7 N 4	.0 *			40
44 8 8.1 80.8 T 45 7 7.1 87.9 S 3	.0 *		¥()	301
	-			=
	. *			20
40 1 1.0 22.2	*			10
49 1 1.0 94.9 1 50 0 0.0 94.9	.0 *	3	28	
The same production	0****		3	- 0
52 2 2.0 99.0	++	++	++	++
53 0 0.0 99.0	29 39	49	59 6	9 .
54 1 1.0 100.0	++	++	+	20
	-	17		-
920			15.	:#1 °
	-			- 1
P 1	5			15
E	-	V III		
R	# ,			-
C	- *	*		-
E N 1	0 * *	**		10
T	***	**	760	
, S		***		-
#		****		_
· · · · · · · · · · · · · · · · · · ·		****	āl .	5
**	_ *****	2 7 San 10 C		-
	- *****	****		
*	*****	*****	H 15)	
	+++-	++	++	+t
		no en antigata en esta de la constitución de la con		*

REETBath	o Bik State Ro	Inc. SPEEDPLOT Poute 76 (Cars) 25 MPH Curve	rogram	
CUM. PEED NO. PCT.	.Westbound .08/15/2002 .2:00PM	50TH PERCENTILE S 85TH PERCENTILE S 10 MPH PACE SPEED PERCENT IN PACE S PERCENT OVER PACE PERCENT UNDER PACE RANGE OF SPEEDS VEHICLES OBSERVED AVERAGE SPEED	PEED24 to PEED	hrough 33 94.6 0.0 5.4 .19 to 33
=======================================	8 g \$ 1	AVERAGE SPEED		2 4
19 1 2.7 2.7 20 0 0.0 2.7	++-	**********	-++	-++ *******100,
21 0 0.0 2.7	100	******	****	
22 0 0.0 2.7 23 1 2.7 5.4	90	i .	14	90.
24 2 5.4 10.8	C *			80
25 0 10.2 2	T 80 *			- 1
27 4 10.8 56.8	70 *	7/		70 - 1
28 - 5 13.5 - 70.3 - 29 4 10.8 81.1	- P E 60			
30 2 5.4 86.5	R - *			50,
31 3 8.1 94.6	C 50 E - *		5	
52				40'
5 5	T - S 30	(2)		. 30
	- *	2		20
	20 .			=
	10 *			10
a a	_****			0
*	+++	+ + +	-++	++ 69
	19 29	39	49 59	++
	20			20
7	_ *			-
	- *			-
	- ** D 15 **			15
	P 15 ** *			=
g.	R - ** *	4 8		
	C - ** * E - ****			= 1/
	N 10 ****		E 1861	- T(
4	T - ***** S - *****	*		-
*	****	*		-
	_ ****	ADMINISTRATION AND ADMINISTRATIO		
	_ *****	** *		-
	_*		ALL	-
	-* ******			-
2.0	++	+	49 59	69
	19 2	SPEED IN MILES		
X Co.	E L		EN SYNCHICAL PLANTS OF THE STATE	MERCAN A CO.

Bather Belrose Boje, rreet 0 Blk. State Rou IMITS East of I-15 to	Inc. SPEEDPLOT Program te 76 (Trucks) 25 MPH Curve
CUM. CUM. CEED NO. PCT. PCT. CIM. CHARACTER A.3 COMM. COM. COMM. COMM. COMM. COMM. COMM. COMM. COMM. COMM. COMM.	OTH PERCENTILE SPEED
T	-+++
0 2 8.7 43.5 - **	*****************************
1 2 8.7 52.2 90 2 4 17.4 69 6 C - **	90
2 4 17.4 69.6 C - ** 3 2 8.7 78.3 U 80 *	90
4 2 8.7 87.0 M -	. 80
5 · 0 0.0 87.0 70 *	7.0
6 2 8.7 95.7 P - 7 0 0.0 95.7 E 60	70
8 1 4.3 100.0 R -	. 60
. C 50 *	50
E - * N 40	. 50
T - *	40
S 30	30
. 20	
- *	20
10	10
0	
++	++
17 27	37 47 57 67
20 *	++
- *	20
- *	
- * *	· · · · · · · · · · · · · · · · · · ·
P 15 * *	15
E - * * * R - * *	
C * *	
E - * * N 10 * *	
N 10 * * T - ***** *	10
S - ***** *	* · · · · · · · · · · · · · · · · · · ·
- ***** *	5 =
- ***** * 5 ****** *	-
-*****	5
-***** * * *	
-****** * *	(40)
+++-	
17 27	37 47 57 67
SPE	ED IN MILES PER HOUR

TREET IMITS IRECTIC OATE OSTED S)N(S)		. Eastl .Eastl .08/15	tk. St t of I pound 5/2002	ate I -15 t	50° 50° 85° 10° PEI	P 76 MPH TH PE TH PE MPH RCENT	Curve RCENTIL RCENTIL PACE SP IN PACE OVER P	E SPER E SPER E SPER ACE SI	FEED	29 thro	ough 3881.0
PEED NO	. PCT.	CUM. PCT.		32	ű t	RAI	IGE O	F SPEED!	S		24	to 42
	1 2.4	2.4			27	AVI	ERAGE	SPEED.		• • • • • • • •		32.2
26	0 0.0		100	+-	+-	· +	***	++-	+ *****	*****	++- k*****	+
	1 2.4 1 2.4	7.1		ē					ý	4.4		- - -
29	5 11.9	21.4	C -			**			1	24	"la	90
	2 28.6	50.0 T	U 80 M -		**							80
32	2 4.8	59.5	70		*					2.		70
34	4 9.5 2 4.8	69.0 I			*				8			=
	0 0.0	73.8 I 83.3 (+	t		×					60
37	1 2.4	85.7 E	3 -	^								50
	2 4.8 3 7.1	90.5 N								S. S.		40
100G	0.0	97.6 S	30			*						30
77 CONT. 1		100.0	.20	*	3							20
	5- 2		10	*								=
	19		- 0**	** '								10
		-	+-	+	+-	+	+	+	+	++	+-	+
			24	+	34	+	4	4	54		4	74
			20	. *		,	,		+		+-	20
			570 573	*								_
		S.	-	*								-
92		P	15	*						(%)	1.6	15
2		E	_	*		15	4				U.S.	-
		C	2	**				é	10			
		N	10	**	* *					o 6		10
		T	-	**	* *	8					49.00	- 10
2		5	-	**	* *	*						
			5	**.	* * * * * *	**		N.				[
			-	***	*** *	**	æ	^		9		- ,
			-* *	****	· * * *	**	*	A	(8)	*		-
			-* * +	*****	***	***	*					255 A
			24		34	SPE	44 ED IN	MILES	54 PER H	64 OUR	+	74

Bather Belrose Boje, Inc. SPEEDPLOT Program TREET 0 Blk. State Route 76 (Trucks) IMITS East of I-15 to 25 MPH Curve	
OSTED SPEED LIMIT. 25 PERCENT UNDER PACE SPEED	through 34 80.0 20.0
CUM. RANGE OF SPEEDS	20
25	++
10 *	10
0 +++++++++	75
20 * - * - * - * - * - * - * - * - * - * -	20 - - - 15 - - 10 - - - 5
25 35 45 55 65 SPEED IN MILES PER HOUR	

Bather Belrose Boje, Inc. SPEEDPLOT Program TREET 0 Blk. State Route 76 (Cars) IMITS East of I-15 to 20 MPH Curve			
OIRECTION(S)Westbound OATE08/15/2002 CIME3:00PM POSTED SPEED LIMIT20	50TH PERCENTILE SPEED		
CUM. PEED NO. PCT. PCT.	RANGE OF SPEEDS		
22	*******************************		
25 2 6.9 24.1 -	*		
26 3 10.3 34.5 90 *	90		
27 4 13.8 48.3 C -	*		
28	80		
30 2 6.9 72.4 70 *	70		
31 2 6.9 79.3 P - *	70		
32 0 0.0 79.3 E 60 *	60		
33 3 10.3 89.7 R -	· .		
34 1 3.4 93.1 C 50 *	50		
35 2 6.9 100.0 E -	a e		
N 40 T - *	40		
S 30	30		
- *	30		
20	20		
- *	±		
10	10		
0	and the second s		
++			
22 32	. 42 52 62 72		
	++		
20	20		
10	i u		
S -			
\(\frac{1}{2}\)			
P 15	. 15		
E - **			
. R - **			
C - **	-		
E - **			
N 10 * *** * T - * *** *	. 10		
S - * *** *			
- **** **	*		
- **** ** *	*		
5 **** **	* 5		
- **** ** * * * * * * * * * * * * * * *	* ,		
-******* ** -******	(120)		
_*******			
++	++		
. 22 . 32	42 52 62 72		

Bather Bel TREET 0 Blk IMITS East	rose Boje, Inc. SPEEDPLOT Program . State Route 76 (Trucks) of I-15 to 20 MPH Curve
RECTION(S)Westbo TE08/15/ ME3:00PM STED SPEED LIMIT20	2002 85TH PERCENTILE SPEED
CUM. 'EED NO. PCT. PCT.	PERCENT UNDER PACE SPEED. 0.0 RANGE OF SPEEDS. 20 to 26 VEHICLES OBSERVED. 14 AVERAGE SPEED. 23.2
2 1 7.1 35.7 100	++ *******************************
3 1 7.1 42.9 - 4 4 28.6 71.4 90	80
5 2 14.3 85.7 C -	*
6 2 14.3 100.0 U 80 M -	80
70	* 70
P - E 60	60
R - C 50	-
E -	* 50
N 40 T - *	40
S 30 *	30
20	
-* 10	10
	· —
+	++
20	30 40 50 60 70
20	* * 20
	*
· .	* *
P 15	* 15
E -** R -**	***
C -**	*** ***
N 10**	***
T -** S -**	***
-***	***
- * * * * 5 * * * *	
_***	***
_***	$(\mathcal{H}, \mathcal{L}, L$
_***	***
20	30 40 50 60 70 SPEED IN MILES PER HOUR

STREET 0 I	BLK State P	, Inc. SPEEDPLOT Program oute 76 (Cars) o 20 MPH Curve
DIRECTION(S) East DATE 08/1 TIME 3:00 POSTED SPEED LIMIT 20 CUM. SPEED NO. PCT. PCT.	15/2002	50TH PERCENTILE SPEED. 32 85TH PERCENTILE SPEED. 37 10 MPH PACE SPEED. 28 through 37 PERCENT IN PACE SPEED. 82.6 PERCENT OVER PACE SPEED. 8.7 PERCENT UNDER PACE SPEED 8.7 RANGE OF SPEEDS. 23 to 44 VEHICLES OBSERVED. 46 AVERAGE SPEED. 32.5
23	+++-	**************************************
27 1 2.2 8.7 90 28 1 2.2 10.9 C -	ar ⁽⁴⁾	***
29 3 6.5 17.4 U 80	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*
30 7 15.2 32.6 M - 31 4 8.7 41 3 70		8
31 4 8.7 41.3 70 32 7 15.2 56.5 P -	**	7.
33 6 13.0 69.6 E 60		- 61
34 1 2.2 71.7 R - 35 4 8.7 80.4 C 50	*	<u>~</u>
36 2 4.3 84.8 E -		50
37 3 6.5 91.3 N 40 38 0 0.0 91.3 T -	*	4(
39 0 0.0 91.3 S 30	*	3(
40 1 2.2 93.5 - 41 2 4.3 97.8 20		
41 2 4.3 97.8 20 42 0 0.0 97.8 -	* *	2(
43 0 0.0 97.8 10	**	10
44 1 2.2 100.0 - **	***	-
+).
. 23	3 33	43 53 63 73
20		20
# :00 <u> </u>		
_	218	*. * * * * * * * * * * * * * * * * * *
- P 15		·
E -	* *	15
R -	* **	
E -	. * **.	
N 10	* **	10
T - S -	**** *	
-	****	*
-	***** *	*
5	****	* * *
	****	· · · · · · · · · · · · · · · · · · ·
- * * - * *	* *******	* ** *
+-	+	-++
23	33	43 53 63 73
g ^w #	12.	SPEED IN MILES PER HOUR

Bather Belrose	Boje, Inc. SPEEDPLOT Program
TREET 0 Blk. Sta	I-15 to 20 MPH Curve
htmrib base of i	1-13 to 20 MPH Curve
)IRECTION(S)Eastbound	50TH PERCENTILE SPEED27
ATE08/15/2002	
FIME3:00PM	10 MPH PACE SPEED23 through 32
POSTED SPEED LIMIT20	PERCENT IN PACE SPEED
₽	PERCENT OVER PACE SPEED
CUM.	RANGE OF SPEEDS
PPEED NO. PCT. PCT.	VEHICLES OBSERVED
=======================================	AVERAGE SPEED26.8
1 5.9 5.9 24 2 11.8 17.6 ++-	++

26 3 17.6 47.1 -	* -
27 3 17.6 64.7 _90	90
28 2 11.8 76.5 C -	
29	80
30 2 11.8 94.1 M*	70
P - *	* -
E 60	60
R - C 50	
E - *	50
N 40	40
T -	
S 30 *	30
20+	- 20
20 *	20
10	10
-*	×
0	0
23	33 43 53 63 73
	++
20	20
-0	·
- ** - **	5
- **	w s x
P 15 **	15
E - **	a a second
R - **	* * * * * * * * * * * * * * * * * * *
E - **** *	*
N 10 **** *	*
T - **** *	*.
S - **** * - **** *	
_ ****	
5******	
_*****	
-*****	1 - (-)
-******* -*****	(12)
++-	
23	33 43 53 63 73
,	מחוחם במת אדו המ מחום י

WIO COUNCIE IU E/O PHOSECT

PAGE	9						0.1	
o ^r							07-01-01	
5-02			g =		***=		100	0
02-15-02 06-30-96/07-01-01		t	74			ū	96-30-96	
-90	S		1		.4		FROM FROM FROM	
	- MESSAGES				8 K	ų	DATE RANGE OR	KS
SELECTIVE RECORD RETRIEVAL 021.440 ALL ACCIDENTS		g.					AND	*
ACCI					3		e e	
VE RE				e ^e			40	
SLECTI			4				021.440	T
TASAS SE.							10 10	EQ
018					*		018,940	
SD 076		HY	7.7				FROM FROM FROM	ar ,
S	B1	CATHY		(5)			SR SR	ERIA
	SUBMITTORS DISTRICT BI	SUBMITTORS NAME	ACCIDENTS SELECTED			- VI	POSTMILE	CIDENT AND HIGHWAY CRITERIA 11 AN 508 ACC FILE TYPE
S	ITTOR	ITTOR	DENTS		6	KITER	11 076 SD	ND 1110
AXR330-CONTROLS REQ NO 4090	SUBM	SUBM	ACCI		O NOTE OF	LOCATION CRITERIA	DISTRICT 11 ROUTE 076 COUNTY SD	ACCIDENT AND HIGHWAY CRITERIA 11 AN 508 ACC FILE TYPE
* =			<u> </u>					

																						179																	
2	SD P	AA	N N	Ac	y d	Ak	Ac	AV	A	Ac	AV	Ac	A	A.	Ä	Ac	AN	Ak	B<	Ac	Ac	Y'	V 1	AV	ď	Ac	Ac	Ä	2 4	BA	Ac	Ac	A	A	A	AV	A'	AA	Ac
	X0>	z m	· Post																																				m
AGE	OA F	y v	×	FA	v v	ž	K	××	9	ž	ž:	ž	× :	ž:	Z	Z	2	N	5	ž	×	ž z	V 2	Z	11	ž	v	ž :	2	2 2	ž	××	N V	×Z	ž	ž:	ž	ž z	ž
Ъ	080	1 1	1		1 1	1	-	1 1	1				1		1		1	1		1	1	1	1 1		1		1	1 1	6.3	1	1	1	1	1	1	1	1	1 1	1
	100	1 1	E	=	1	Ŷ	9	m	9	1	=	ï	,	i	1	1 5	ř	i	=	Ü		ì			ř	i		10	3 1		i.	į.	í	¥	ì	r	1	1 1	ř.
	000	1 1	1	4	1 1		1	1 4	1		2	1	1	1	1		i		4	t	1	1	1		į	1	1	100		1 1	1	i.	ì		1			1 1	
	0 0 0	V3D	VIE	2411	44D	1	1	43B	V2D	VIF	441	1	1 1	VZD	7 7 7	101	4411		2411	4411	1	1 0	A A D	1 1	april.	424	200	448	4.0	4 47	0.04	1	1					1 1	
-02	100	2D .			0 4	. 0	[±,	4 m	116	1	H	111	L :	31	:	==	HS	15	314	311	311	H	2 2	: E	311	311	311	311	1 1	411	F.	47	m	4	N	-10	47 1	110	E FE
15	0 00 04	0.0	1 -		>>	>	>	4 (1	0	ı	0	4	4	2		r 4	C	ਧਾ	-	N	2	20	40	4 4	N	N	CA	CAC	4 1	1 0	ਚ	4						3,00	>
02-	RSN	00	0 0	0 0	00	0	0	00	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	00	0 0	0	0	0	0	0	0	0 0	0 0	20	0
/96	PE	00	00	0 0	00	0	0		0	0	0	0	0 (0 :	00	0	0	0	0	0	0	0 0	2 0	0	0	0	0	0 0	9 0	0	0	0	0	0	0	0 0	0 0	0 0	00
30-	V S I I	v v																																					11
9	DHW	E 3						шз																															· (2)
0	d H	00	D.C),K	Ų C	i iu	В	טט	<	7	0	0	0	9 0	NE	¢ 0	<	U	Ω	U	K	K	4	C	K	A	A.	0 4	¢ c	2	U	D	X	Ω	4	ET (2 4	40	0
	× =																			,																			
	NO MTR VEH	03		010		02		010	02		01	01	010	0.2	10	010	01	0.1	0	01	0 1	0 5	5 6	0.1	0.1	0.1	0	0 0	2		0.1						70	00	
	HOU	В		BE		D B		0 0 E E			DE					4 4				1000											A F				2		0	D A	
	2 2 2 3	H D		1 = 0		1		==			=:					=															=						=	=	
٦	IR S	m		X		K		KK			< :					4 <															K						4	K	
EVA	COND W L S	C C		2 2		AA	100	2 Z			AA					2 4															AA						A A	AA	
RI	C O C	LC1		r LO		9		ਰਾ ਦਾ			5					4 12												200		-	2	び	9	4	2	r	7	~	i.
REDE	CIDENT	92	V	743	3	664	- 9	378	0		508	0	0	7	0	216	0	9	S	9	0	NE		11	N	N	-	0 "	1	5	111	9	2	-	-		737	664	3
RD	CIDEN'	121	60	10	10	60		0 9	90		90		60	77	13	12	90	12	12	12	12	01	12	12	11	12	12	12	1	12	512	12	10	11	1	0	215	509	1
RECORI	ACCIT	685	8	685	68	685	T - }	685	68		685	99	9 9	o o	S S	685	68	68	68	68	68	0 0	2 6	68	68	68	68	9.9	9	68	68	69	68	68	9	5	D Q	68	1
E R		6 0		20		0 9		200			ر و ر	n	0 1	n	0	00	0	0	0	0	0 6	70	0	0	13	0	0 (00	5	S	6 0	0	S	0 0	0	L	ח	0 9	0
N O	TIME TIME	020	~	082	m	070	1	153	-	- 1	100	V	3 10	-	10	160	0	474	0	9	0 +	40	10	0	-	8	-	2/ 1		N	172	-	O	NI	77	C	180	114	i)
EC.		0.1	C	01	~	0.1		01	0		98	- (D 0	ת	1	00	0	-	0	0	-	- 0	1 @	1	-	0.0	50 (JV ==	,	98	16	16	0.1	000	00	0	20	00	
SEL	CCI TE	7-	6	0	0	Ś		J 6	0		- 4	7 .	50	7	L	1	- 9	4-	-	- 9	m 1	5 5	9	-1	7-	9.	-	9 4)	5		1	3	1	9	*	- 4-	04-	2
AS 0/	DATE DATE	5-2	2	10	1	5-2		w m	4		3-2	1 :	٠.	4	-	8-2	8-	2-	3	-	'n t	00	4		'n	-	9 0	70	2	6	4	2-	-	8	0		1	09-1	C.
TAS	KAD	0 7	120	7 0	2040	6 0		7 0 7			0.			200	872	2 0			200						1536		2210				7 0						2	2	
018	s 0 =	£	£	ш:	H	×	1	E E	Ξ		ш	11 [ń :	ij	Œ	1 61	Z	ŭ	<u>.</u>	Z ;	3 :	E 3	3	Z	Z	3	Ξ.	≥ 3	2		3						=	3	
	7 F 7	- 11		=:		- 11		, , ==			=:					: =															H -						=	=	
910	RI	RO I		RO .		RO		2 S			RO					RO															RO					(20	RO	12
	100	-	-	1 11	-	Н	,		+		H .	٠.	٠,	4	-	0.1	-	П	_	-	, m			1	7	-	-	4-	ŧ	-	01	-	н	r ,	4	,	T D	0.1	0
SD	GIIWAY LANE LT R	1 0		010		1 0	,	100	Н		0 0	٠.	٠.	4	_		7	н	-4	-	-			н	н	н,	٠,	٦.		-	1	П	п	.	-	,	4	-	6
	IIGII B L	2 0		200		0. 2		0 0 7 7			0 0					Z 0															0 Z						2	0 2	
	EE	В	В	В	ш	В		2 11	В	1	m s	n :	11 0	1	E	В	B	B	n	B :	m c	ń n	п	m	В	В (n a	n c	1	В	В	В	В	m	n	0	Ω	В	
	I RU	D		0		0		00			0					0	-37	50	Ŧ.,	T.C.	100										CO	0				5	נ	UC	
	, # O	0 0	0	0 0	0	0		00	0	0.	0 0	> 0	0 0	0	0	0.0	0	0	0	0	0 0	00	0	0	0	0	0	0 0		0	0	0	0	0 0	0	0	2	0	
	SHE	.99		. 05		.09		.09			10	4 -		-		30	m.	m	m	mr	חר	7 1	1 1	m	3					4		m.	m.	. ·	4	L	10.	. 62	
T	LOC POST MILE	018		019	-4	019		013	-		610	777	710	CTI	119	019	9	0	5	01 0	מ מכ	ם ת	0	0	ON	0119	9119	610	1	-	019	-	-	4 -	-	0.10	-+	019	
DETAI	日民国	_					100			,									-	<u> </u>					_							-		757.07		-	200	.,	
1 0	. 00	SD	SD	SD	SD	SD	2	SD	SD	6	SD	200	200	ne.	SD	SD	SD	SD	SD	SD	200	300	SD	SD	SD	SD	25	200		SD	SD	SD	SD	SD	SD	0	JC.	SD	
ACC.	ES U	9		9		9		0 9	9	,	9 4	0 4	0 4	0	9	9	9	9	9-1	9 (9 4	0 4	9	9	9	91	0 1	0 40	1	9	9	9	9	9 (Q	4		9	
900	RTE	0.2	-	00		0.7	0	07	07	0	0.7	0 0	000	0	0.7	0.7	0.1	0.3	0.7	0.7	0 0	0 7	0.7	07	0.7	0.0	0	0 0		0.7	07	07	0 2	0.0	0	0	5	07	
AXR3	IST	11		11	11	11		11			11					11														11	11	11	11	11	11	-	7 7	11	
Z Z	DI										ų.																	***************************************											

	14																					- 6							
3	SD P	BAA	BA	Ac	AA	AA	Y A	AA	A	Ac	B	XX	· v	Bc	AV	BY	AV	Ar	AA	Ac	Y Y	Be	AV	V	S. P.	AV	YY.	AA	Ac
	ZO>																											впв	
C2	0A F	4 X X X	/ V V	× ×	VV	. v Z	×××	v ×	¥ .	v v	v	××	V	٧	×	v y	v v	¥	× ×	×	v v	V	v v	V 1	/ V	VV	. ×	v v v	NY
PAGE	100	1 1 1	1 1	1 1	1 1					1 1		1 1					1 1	1	1 1		1 1	9	1 1			1 1		2 Z 9	ZJ
	080	1 1 1		1 1	1 1	1 10	1 1	1	1	1 1		1 1	1	1	1		1		11	1	1 1		1 1			1 1	1	111	1 1
	200	1 1 1	1 1	m i	1 1	10	1		1	1 1		1 1	1	100	ř	1 1	1	1	T 1	1	10.0	1	1 1	1 0	= E	1 1	20		1 1
	000	111	1 1	44	1 1	1 \				1 1		1 1		1		1		1	$\begin{array}{ccc} 1 & 1 \\ 1 & 1 \end{array}$		1 1	1	1 1	100		1 1	1	1 1 6	1 4
	100	A 1 1	2B	m !	1 1	4H	1 1 5	1 52	C±,			= 1		1	Ü	1		+	1 1		4 11	311	1 3	1 11	116	н	1 ;	3H 4B 4B	H D
7.5	000	4 1 1	72	1 7	1 1	44	1 5	77	Z	1 1	4	44		ť	i.	; ;		1	1 1	i	1 4	23	1 1	4 4	29	23	1 0	222	11
00	100	311	1 H H	711	2 F	311	11		1 0	1F	311	119		38	E E	7311	10	7B	V2D	02	31	20	1 F	V1-	H	2D	02	1F 4F 2D	LF 3H
15	0 2 4	4 4 4	4 4	1 2	1 4	4 >	>	- 1	1 =		2	NI	(1)																2 4
12-	I I	00	000	00	00	000	00	00	00	000	0.1	000	00	00	00	100	000	00	00	03	000	0.1	00	00	01	00	000	100	0.0
0/9	PER																											000	
6	SH	v v v																	0 0 v v					v v				v v v	0 O
30	D H H	ннн																											
-91	BHD	Z Z W												ω		0.7												X Z Z	
. 0	A F	000	AU	DK	DA	00	tr C	0	0 4	< <	2	. O	0	A															
						100																							
	NO MTR VEH		7 7	-	7	2 1			0	4	m. 1			н	н.	10	1	7	N	2		N	Н	_		2	2	7 7	-
		000		0		00			C		0	00		0	0 0	00)	0		0	0		0	=		0	0	00	01
	C X X	<u>ы</u> ы ы		D		D E			5			3 Z				2 0		(H)		K		A	Ξ		10	2.5	В	日田	Ē
	80			=		1 11			-			==				3 0		0		II D	A II	D	II D		D D		H D	0 11	D
	e (n	AKK		4		AA			4			< <						N.		В		4	A		A		A.	B I	A · III
'AL	COND W L	OKO	KK	a	K	DK						<<				2 4		K		Ω	<		C		0		4.	20	0
IEV	E C E	RKK	AA	В	K	AK			K	4	<:	n m		u,	K :	а ш	1	K.	4	В	ш	<	d,	A	m	m ·	K.	CA	K
RETRIEVAL	日の日	4 6 1	4	-	O	4 N			4)	- t	n n		7	۵ -	+ 10	1	9	Ď,	9	. 9	Н	S	r.	U	9	9	2 2	v
ORD RETR	OMMON CIDENT UMBER	88 06 91	50	76	m	33			63)	77	90	- 6	75	1 6	77	-5	14		82	99		29		39		20	16	91
000	COMMON CCIDEN NUMBER	18	NN	33		96			26	2	14	65	- 6	m	4 0	14		26	0	07	24	m	25	-	29	-	99	22	30
CORD	CCID	851 850 851	m m	851		850 850			851	1	50 1	200	- 3	5	חע	51		51	0	51	51	S	51	10	51	5	50	51	51
REC	A	968	00	968	9	396			996	1	9	968		0	2 0	968		68	0	968	9 9	9	968	9	168	9	68	68	89
[1] K	田田	200	0 2	0	0	0 5			0		0 0					0		0 0		S	5		2		6.0		6 0	. 6 8	6
CTIVI 440	TIME	33	4 10	20	0	20			14		0 4	000	-	10	7 7 7	5 4		750	7	24	0.1	4	02	23	50	6 .	10	113	34
3CT	DENT TI R HH	10 2 2 2 2		7 0		В 7			6 2		00			7 -				Н.		2	г		2		2		1	7 7	2
EL.E	14 54	000	00	9	5	- 9			- 9		00-	00	. (2 0	66		98	7	-01	-01	0	- 98		-97	0	- 98	-99	-97
SO	AAO	20 111	00	30	2	111			21		0 4	22	12	4 0	næ	25		21	7	60	0.1	0	13	3	13	B	17.	12	29
SAS 40/	Q QW	8 - 8	பி	-	S	7-0			2	1 9	6 6	70		1	1 1	9		8 -	t i	1		1	-9	1		1	2	2-1	4
TAS.	KAD	000		1 1		7 0 6 1			7 1			0		0 0				0 0	>	0	0		0		0		0	10	0
03	00 11	M 1 E 6		<u>ы</u>		EE			3		u	1 (*)		9 3		9		9 4		E3	M 1		E		9 3		E 3	M 7	ω
0.1	LHI	the contract of	1 1	1		1 1	3		1		1 1			1		1	10	1		ī	1		1		1		1	1 1	1
9	A CL E		==	= :	= .	==			Ξ		==			= =				= :		Ħ	=		=		=:		=	==	Ħ
0.76	RI	RO RO	200	RO	2	RO			RO	,	202	2	9	200	2 2	RO	- 19	200	2	RO	RO	0	RO	.0	RO	2	RO	RO	RO
				ri -	4	пп		(4)	-		-									H	1		1 F		1.	-	H	1 1	1
SD	LANES LT RT	000	00	0		00			0		00	0		ם כ				0 0	2	0	0	0	0	0	0		0	00	0
	IGHWA B LAN A LT	01	01	01	5	01			0.1	,	0 10	0.1	5	70	01	0.1		10	1	01	01	0.1	01	0.1	01	0.1	0.1	01	10
	HIC B A	222	2 2	2 0	9	22			2		7 2	2	4	40	2 12	N		7 6	1. 1	Z	2	2	2	2	2	.7	7	2 2	2
	ĮΣH	ппп		Д 0		ВВ			B	2	2 0	В	0	2 1	п	В	1	пп	1. 1	B	B 1	m	В	E	m c	n	m '	E E	E
	IAU	000		00		UU			U		0			ع د			(ن د		S	0	U	C	U	U	0	U	00	C
	· H D			D		ממ			D		3 3			2 =				2 2		_	n :		n		2:		n	חם	D
	E M	690 810 820	20	920	7 (020			120		300	0	-	200	4	0		40		90	20		00	S	90	0	00	10	120
2	LOC POST MILE								0									0.0		U.5	7.0		0.8		8.0		0.9	0.0	1.0
IL		010		01	4 0	020			020	0	020	02	0	020	N	CV		020	1 (0.20	020	N	020	2	020	V	020	020	021
TI	日民田					120.				æ.														-					
-D	9	SD	SD	SD	2 6	SD.			SD	00	9 0	SD	00	0	SD	Q	2	200		SD	SD	2	OS	SD	SD	O.	SD	SD	SD
ACC-DETAIL 4090	rn 77 F-									,	, 0)	41	ď	1 0	S	VI.	C	u C		a	O) (/1	S	S	u] (r.J	V1	0) 0)	G)
	RTE NO I	376 376 376	076	176	- 1	176	ě		910	31	970	91.0		94.0	940	910	t	76		9/0	940	9/0	910	16	910	0	16	76	16
330 NO		0000	00	00	, (00			0	0	0	0	C	0	0	0	<	0 0		0	0	0	0	0	00	2	0.7	00	0
AXR REQ	DIST	1111		11	: :	11			11	-	11	11	-	11	-	1		11		11	11		1.1	г	11	1	11	11	11
AA	Q											100000				and the	-		,									-1.5	

RTES PLOC	AXR330 ACC-DETAIL REQ NO 4090	-DETA	IL.					SD		940		018	TASAS		SELECTIVE		RECORD RETRIEVAL ALL ACCIDENTS	RETR	IE.	AL				0	6-3	0-0)/96	02-15 06-30-96/07-01	1 1:	02			PAGE	田	4	
SD 021.040 U C B Z 01 01 RO H - W 7 01-10-98 2040 968512939 I B D B H D E 01 D W 1 < 00 00 121H	ES	.0.0		-	16	= 2	101	IMA	; o	- 6	A 6	00 0	O e	ACC	IDEN'	T	COMMO			I V			NO NT N	P F			PEI	7.SN	0 0		0 0					0.0
SD 021.040 U C B Z 01 01 RO H - W 7 01-10-98 2040 968512939 1 B D B H D E 01 D W 1 < 00 01 22H 24B 5 < C S S 021.100 U C B Z 01 01 RO H - W 1 05-07-00 0040 968512190 6 B A H D H 0 Z A W 1 < 00 01 22H 24B 5 < C S D 021.110 U C B Z 01 01 RO H - W 2 02-22-99 1300 968512190 5 A A A D E 01 G W 1 < 00 00 99H V2D				: U	20		A	1 2		00	- H	= =		DA	YR III	IIII	NUMBEI						VEH						1		0			2		
SD 021.060 U C B Z 01 01 RO H - W 1 05-07-00 0040 968511477 1 A D A H D E 01 D W 1 < 00 01 22H 248 5 < C S			021.040	Ω					0.1	RO	=	K		-10-			10	6					0.1	D	3	٧	0.0	00	H	1	1	1		×	Ä	7.5
SD 021.100 U C B Z 01 01 RO H - E 2 01-24-00 1315 968512190 6 B A H H D H 02 A W 1 < 00 00 99H V2D 4 < C B S 021.110 U C B Z 01 01 RO H - W 2 02-22-99 1300 968512190 5 A A A < D E 01 G W 1 < 00 00 23H N < B S D 021.120 U C B Z 01 01 RO H - W 1 09-28-97 1915 968512378 6 A D A H D B 02 C W 1 < 00 01 V2D 44B N < R S D 021.240 U C B Z 01 01 RO H - W 2 08-04-97 0615 968512352 1 F D B H D A 03 A E 1 < 00 01 V2D V3F N < B S D 021.340 U C B Z 01 01 RO H - E 7 05-26-01 2350 968512352 1 F D B H D A 03 A E 1 < 00 01 V2D V3F N < R S D 021.340 U C B Z 01 01 RO H - E 7 05-26-01 2350 968512352 1 F D B H D A 03 A E 1 < 00 01 V2D V3F N < B S D 021.340 U C B Z 01 01 RO H - E 7 05-26-01 2350 968512352 1 F D B H D A 03 A E 1 < 00 01 V2D V3F N < B S D 021.340 U C B Z 01 01 RO H - E 7 05-26-01 2350 968512352 4 A A A H D E 01 A R 1 < 00 01 V2D V3F N < B S D 021.340 U C B Z 01 01 RO H - E 7 07-15-00 1805 968512614 6 A A A H D A 02 C M 1 < 00 01 V2D V3F N < B S D 021.340 U C B Z 01 01 RO H - W 3 10-28-97 0820 968512614 6 A A A H D A 02 C W 1 < 00 01 V1F N < B S D 021.340 U C B Z 01 01 RO H - W 3 10-28-97 0820 968512614 6 A A A H D E 01 H W 1 < 00 00 V2D V3F N < B C D 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968512614 6 A A A H D E 01 H W 1 < 00 00 V2D V3F N < B C D 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968512614 6 A A A H D E 01 H W 1 < 00 00 V2D V3F N < B C D 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968512614 6 A A A H D E 01 H W 1 < 00 00 V2D V3F N < B C D 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968512614 6 A A A H D E 01 H W 1 < 00 00 V2D V3F N < B C D 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968512614 6 A A A H D E 01 H W 1 < 00 00 V2D V3F N < B C D 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H M 1 < 00 00 V3F N C D D 021.400 U C B Z 01 01 RO H - W 1 < 00 00 V3F			021.060	1	U				0.1	RO	=	×		-10-			9685114	7					01	۵		·V	00	0.1	221		1		1	2 < 0		71
SD 021.110 U C B Z 01 01 RO H - W Z 02-22-99 1300 968512190 S A A A C D E 01 G W 1 < 00 00 23H N < B SD 021.120 U C B Z 01 01 RO H - W S 11-27-97 1625 968512378 4 B A D F D E 01 D W 1 < 01 02 23H 44H N < R SD 021.210 U C B Z 01 01 RO H - W Z 08-04-97 1915 968507304 5 A A B H D F 01 G W 1 < 00 00 1 V2D 44D N < N SD 021.340 U C B Z 01 01 RO H - W Z 08-04-97 0615 968507304 5 A A B H D F 01 G W 1 < 00 00 1 V2D V3F 6 C SD 021.340 U C B Z 01 01 RO H - E 7 05-26-01 2350 968512352 1 F D B H D A 03 A E 1 < 00 01 V2D V3F N < B SD 021.340 U C B Z 01 01 RO H - E 3 09-12-00 1742 968512352 4 A A A H D E 01 A E 1 < 00 01 27H N		100	021 100	=	C				0.1	RO				-24-			685121	0					0.2	A		٧	00	00	66		1	10		>1		
SD 021.110 U C B Z 01 01 RO H - W Z 02-22-99 1300 968512190 5 A A < D E 01 G W 1 < 00 00 23H <))							t									8			O		٧	00	00	1		1	1	1	I >		
SD 021.190 U C B Z 01 01 RO H - W 5 11-27-97 1625 968512378 6 A D A H D B 01 C M 1 < 01 02 23H 44H N < R SD 021.210 U C B Z 01 01 RO H - W 5 11-27-97 1915 968512378 6 A D A H D B 02 C M 1 < 00 01 V2D 44D N < N SD 021.240 U C B Z 01 01 RO H - W 2 08-04-97 0615 968507304 5 A A H D F 01 G M 1 < 00 00 V1F N < N SD 021.340 U C B Z 01 01 RO H - E 7 05-26-01 2350 968512352 1 F D B H D A 03 A R 1 < 00 01 V2D V3F N < R SD 021.340 U C B Z 01 01 RO H - E 3 09-12-00 1742 968512352 4 A A A H D B 01 A R 1 < 00 01 V2D V3F N < R SD 021.390 U C B Z 01 01 RO H - E 3 09-12-00 1805 968512614 6 A A A H D A 02 C M 1 < 00 01 V2F N < R SD 021.390 U C B Z 01 01 RO H - W 3 10-28-97 0820 968512614 6 A A A H D R 01 H W 1 < 00 00 V2D 44D N < R SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968512614 6 A A A H D R 01 H W 1 < 00 00 28H N < R SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < R SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < R SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < R SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < R SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < R SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < R SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < R SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < R SD 021.400 U C B Z 01 01 RO M N & R SD 021 RO M N & R			021.110						0.1	RO		3		-22-	-	300	5121	06				ш	0.1	0			00	00	C		1	1	7	V		
SD 021.210 U C B Z 01 01 RO H - W 1 09-28-97 1915 968512378 6 A D A H D B 02 C W 1 < 00 01 V2D 44D N < B SD 021.340 U C B Z 01 01 RO H - B 7 05-26-01 2350 968512352 I F D B H D A 03 A E 1 < 00 01 V2D V3F 6 < C SD 021.340 U C B Z 01 01 RO H - E 3 09-12-00 1742 968512352 4 A A A H D E 01 A E 1 < 00 01 V2D V3F N < B SD 021.390 U C B Z 01 01 RO H - E 3 09-12-00 1805 968512614 6 A A A H D A 02 C W 1 < 00 01 V2P F S SD 021.390 U C B Z 01 01 RO H - W 3 10-28-97 0820 968512614 6 A A A H D E 01 H W 1 < 00 00 V2D 44D N < B SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 V2D 44D N < B SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 V2D 44D N < B SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < B SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < B SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < B SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < B SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < B SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < B SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < B SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < B SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H			021.190		U				0.1	RO	Ξ			-27-	~	625	6851						0.1	0			01	02				1	á			.,
SD 021.240 U C B Z 01 01 RO H - W 2 08-04-97 0615 968507304 5 A A M ID F 01 G W 1 < 00 00 44H 6 < C S N			021.210		C				0.1	RO				-28-	7 1	915	6851						02	U		٧	00	0.1			1	1	î	v		
SD 021.240 U C B Z 01 01 RO H - W 2 08-04-97 0615 968507304 5 A A H D F 01 G W 1 < 00 00 44H 6 < C SD 021.340 U C B Z 01 01 RO H - E 7 05-26-01 2350 968512352 1 F D B H D A 03 A E 1 < 00 01 V2D V3F 6 N B SD 021.340 U C B Z 01 01 RO H - E 3 09-12-00 1742 968512352 4 A A A H D E 01 A E 1 < 00 00 22 7 H 1 N SD 021.390 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H 1 N SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H 1 N SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N S D 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N S D 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N S D 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N S D 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N S D 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H			1		1			-	1															d			00				1	1	r	V		V
SD 021.340 U C B Z 01 01 RO H - E 7 05-26-01 2350 968512352 1 F D B H D A 03 A E 1 < 00 01 V2D V3F 6 < N B SD 021.340 U C B Z 01 01 RO H - E 3 09-12-00 1742 968512352 4 A A A H D E 01 A E 1 < 00 00 V1F N < B SD 021.390 U C B Z 01 01 RO H - E 3 09-15-00 1805 968512614 6 A A A H D A 02 C W 1 < 00 00 V2D 44D S < B SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 V2D 44D N < B SD 00 00 V2D 44D N < B SD 00 00 V2D 00	94		021.240	0 0	U	ш		0.1	0.1	RO	H	3		34	16	9	-					Čt.	0.1	U			00				1	1	1	V		v
A W 1 < 00 04 V1F N < B S 021.340 U C B Z 01 01 RO H - E 3 09-12-00 1742 968512352 4 A A A H D B 01 A E 1 < 00 00 V1F N < B S 021.390 U C B Z 01 01 RO H - W 7 07-15-00 1805 968512614 6 A A A H D A 02 C W 1 < 00 01 27H 5 < B S B S 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < B S 0 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G 0 0 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G 0 0 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	176	6	021.340	0 0	U	m		011	0.1	RO	H	E		26	01	m						K	03	×			00					1	1	v		v
SD 021.340 U C B Z 01 01 RO H - E 3 09-12-00 1742 969512352 4 A A H D E 01 A E 1 < 00 00 V1F M < B SD 021.390 U C B Z 01 01 RO H - W 7 07-15-00 1805 968512614 6 A A A H D A 02 C W 1 < 00 00 V2D 44D N < B SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H	,				1	i						į												K			00					1	1	v		v
SD 021.340 U C B Z 01 01 RO H - E 3 09-12-00 1742 969512352 4 A A H D E 01 A E 1 < 00 01 27H 5 < B SD 021.390 U C B Z 01 01 RO H - W 7 07-15-00 1805 968512614 6 A A H D A 02 C W 1 < 00 00 V2D 44D N < B SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G SD 02 02 02 02 02 02 02 02 02 02 02 02 02																								D			00						1	×		ν
SD 021.390 U C B Z 01 01 RO H - W 7 07-15-00 1805 968512614 6 A A A H D A 02 . C W 1 < 00 00 V2D 44D N < B SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N < G	376		021 340		C	m			0.1	RO		1		-12-		74	685123	52	A			D	01	K			00				1			v		v
SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A.A A H D E 01 H W 1 < 00 00 28H N< G	220		021 396	=	C	m			-	RO	Ξ			-15-		80	685126	14				A.	02	U		v	00			44	- Q		!	×	Ä	v
SD 021.400 U C B Z 01 01 RO H - W 3 10-28-97 0820 968510782 6 A A A H D E 01 H W 1 < 00 00 28H N C))	ĺ.					É													R		v	00			t	1		1	×	BA	~
	920		021.400	0 0	U	B		0.1	0.1		H	3	٣	1-28-	16		9685107			N.			0.1	Η		v	00		2	1	1	1				v

PAGE	84	CODE		N CO 45	ın u	97.0	o.						·	١		<u>.</u> .	>	SDAY	AX		DAY							
×	98	CODEL			1.2								WERK	CODE		1-SUNDAY	Z-MUNDAI	4 - WEDNESDAY	5 - THURSDAY	6-FRIDAY	7-SATURDAY			8				
02-15-02		LINES	51	7 7 0	-1 0	000	0				120	4	-DAY OF W	CT		20.7		5.1		11.6	25.9							
6/07		~											1 1 1 1	NUMBER	13	10	ם ד	4	· M	6	20							
02-15-02	is 16	MOTOR VEHICLES INVOLVED NUMBER PCT CODE	68.8 1	7 3 Z		WAY>	OMICALITACK-N	S-SOUTHBOUND	E-EASTBOUND				> <-										Sen		(8)		ii.	
		TES	68	721		OF HIGHWAY- PCT CODE	N-N	5-50	E-EA W-WR				-			ARY	1 747					3T	SMBER	3ER	ABER	DER		
	¥-	OR VEHIC	53	1221			c	00	58.4	2		÷	П.	CODE		01-JANUARY	OZ-FEBRU	04-APRIL	05-MAY	06-JUNE	07-JULY	08-AUGUST	09-SEPTEMBER	10-OCTOBER	11-NOVEMBER	12-DECE		
RETRIEVAL	1		49			NUMBER	C		32				HJ.NOM	PCT		7.7		10.3	16.8	6.4	10.3		7.7	5.1	6 n	7 + 0		
D RET	ARY -	INJURED	4			-		2	(20)	¥			1	BER	,	9 4	0 4	· co	13	'n	8	8	9 .	d, f	Ü.Δ	-		
/E RECORD RETRI ALL ACCIDENTS	ACCIDENT SUMMARY	ERSONS			.*	A	JTTONAL.	SSWAY	CITY ST	D DAT	L'A		>	NUMBER	· ·													
SELECTIVE RECORD 021,440 ALL ACCI	- ACCIDE	KILLED				CONTROL	C-CONVENTIONAL	E-EXPRESSWAY	S-1-WAY C	INVALID DATA	+-NO DATA		^ 1 1 1 1	CODE		1661	2001	1994	1995	1996	1997	1998	1999	2000	2001			
TASAS 018.940/	i	PDO .	43		Ti.	ACCESS CON BER PCT	100.0	0.0	0.0	0.0	0.0		YEAR	PCT		0.0		0.0	0.0	2.5	23.3	20.7	10.3	20.7	22.0			
na.		G.				NUMBER	77	0	0 0	0	0		1 1 1	NUMBER	(0 0	0 0	0	0	2	18	16	α (9 7	11			
970 GS		INJURY	32			NU					(4)		>		G						14			Si				8
		н					MID	W.	X X	A.M.	A.M.	N W	A.M.	A.M.	E. A.	NOON.	P M	P.M.	P.M.	P.M.	P.M.	P.M.	P. M.	. E :	D.M.	P. M.	UNKNOMN	
		FATAL	2			CODE	- 12	1 - 0	7 6	- 4	S.	2 6	8	6	10	17	1	7	e -	4	មា	9			v 6		- UNK	
		FA				DAY	00	01	03	. 04	0.5	07				112-				16	17	18	19	7 0	21	2 6	25	
MMARY	4	#1 2000				UR OF PCT	2.5	0.0	0.0	0.0	1.2	2.5	3.8	2.5	7.7		6 4	2.5	3.8	5.1	6.4	6.4	5.1	0.0	6.1	3.8	1.2	
30 ACC-SUMMARY NO 4090		TOTAL ACCIDENTS	77	WITHOUT	0	NUMBER PCT	2		7 0	0	1	7 7	3	2 1	9 4	7 4	· w	2	3	4	. 2	2	4 r	n v	ט ס	n m	יר	
AXR330 REQ NO	1.60			g.		•																						

100			190							
9		a	7.				140	OP.	^ !	STREET ATE RTE
									NOI	(EXIT)
PAGE	A	TIAL A ON ROAD REPAIR-ZONE AD WIDTH CONDITION	a.		E				ACCIDENT LOCATION	ON-NO-NO
06-30-96/07-01-01	CONDITION	A-HOLES, RUTS B-LOOSE MATERIAL C-OBSTRUCTION ON ROAD D-CONSTRUCT-REPAIR-ZONE E-REDUCED ROAD WIDTH F-FLOODED G-OTHER H-NO UNUSUAL CONDITION	<-NOT STATED		CODE	A-DRY B-WET C-SNOWY, ICY	D-SLIPPERY <-NOT STATED -INVALID CODES	22:1	OR RAMP CODE	
6-30-5	ROADWAY	0.00			FAC		O V		SECTION	0.00
0	IRRO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				10.3	0.00		<pre><intersection number="" pct<="" pre=""></intersection></pre>	00000
	NUMBER			y.	ROAD NUMBER	67	000		2	200 N
/AL	î	ж	560	×	IDN *	2	í.		1	ALIGN-RIGHT ALIGN-LEFT SED TIDED
SELECTIVE RECORD RETRIEVAL 021,440 ALL ACCIDENTS	ACCIDENT SUMMARY PE OF COLLISION PCT CODE	A-HEAD-ON B-SIDESWIPE C-REAR END D-BROADSIDE E-HIT OBJECT F-OVERTURN G-AUTO-PEDESTRIAN	<pre>< NOT STATED -INVALID CODES</pre>	540	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A-DAYLIGHT B-DUSK/DAWN C-DARK-STREET LIGHT	D-DARK-NO STREET LIGHT E-DARK-INOPR STREET LIGHT F-DARK-MOT STATED <-NOT. STATED	DES	GROUP	R-IND, ALIG L-IND, ALIG D-DIVIDED U-UNDIVIDED
TIVE R	TDENT OF COL		V		1	IGHT /DAWN -STREE	-NO ST -INOPR -NOT S	-INVALID CODES	HIGHWAY R PCT	0.0
SELECTIV 021.440	- ACCIDE -TYPE OF PCT	11.6 1.2 1.2 1.2 16.8 0.0	0.0		CODE	A-DAYLIGHT B-DUSK/DAWN C-DARK-STRE	D-DAKK-NO STREET E-DARK-INOPR STRE F-DARK-NOT STATED <-NOT STATED	-INVA	NUMBER	0 0 0 7 7
TASAS 018.940/	NUMBER	. 141 131 131 131 131	00		-LIGHTING- PCT COD	NEW TOTAL	0.00		DN	э
018	V	5	3		1 .		, 1000	0	Î	ONING
SD 076	PRIMARY COLLISION FACTOR	1-INFLUENCE ALCOHOL 2-FOLLOW TOO CLOSE 3-FAILURE TO YIELD 4-IMPROPER TURN 5-SPEEDING 6-OTHER VIOLATIONS B-IMPROPER DRIVING C-OTHER THAN DRIVER	D-UNKNOWN E-FELL ASLEEP <-NOT STATED -INVALID CODES	, 12 	R NUMBER	A-CLEAR B-CLOUDY C-RAINING	D-SNOWING E-FOG F-OTHER G-WIND	<-NOT STATED	ER PCT CODE	A-CONTROL FUNCTIONING B-CONTROL NOT FUNCTIONING C-CONTROLS OBSCURED D-NO CONTROLS PRESENT <-NOT STATED
MMARY	YY COLI	16.8 0.0 2.5 22.0 28.5 27.2 0.0	0000		WEATHER	71.4 22.0 5.1	0 7 0 0	0.0	IGHT O	7.7 0.0 0.0 92.2 0.0
AXR330 ACC-SUMMARY REQ HO 4090	<primar NUMBER</primar 	13 22 21 21 21	0000	æ	NUMBER	17	0 0 10	0	<r] NUMBER</r] 	6 0 71 0

- PARTY SUMMARY - -

02-15-02

OTHER ASSOCIATED FACTOR	0 0.0 1-INFLUENCE ALCOHOL 0 0.0 2-FOLLOW TOO CLOSE 0 0.0 3-FAILURE TO YIELD 0 0.0 4-IMPROPER TURN 0 0.0 5-SPEEDING 0 0.0 6-OTHER VIOLATIONS 0 0.0 A-CELL PHONE* (INATTN) 0 0.0 B-ELECTRONIC EQUIP* (INATTN) 0 0.0 C-RADIO/CD/HEADPHN* (INATTN) 0 0.0 C-RADIO/CD/HEADPHN* (INATTN) 0 0.0 E-VISION OBSCUREMENT 0 0.0 F-INATTENTION - OTHER 0 0.0 F-INATTENTION - OTHER 0 0.0 G-STOP & GO TRAFFIC 0 0.0 I-PREVIOUS COLLISION 0 0.0 J-DREVIOUS COLLISION 0 0.0 L-UNINVOLVED VEHICLE EQUIP	.0 0 0.0 M-OTHER .4 0 0.0 N-NONE APPARENT .0 0.0 P-WIND .0 0.0 S-RUNAMAY VEHICLE .0 0 0.0 T-EATING* (INATTN) .0 0 0.0 V-ANIMALS* (INATTN) .0 0 0.0 W-PERSONAL HYGIENE* .0 0 0.0 W-PERSONAL HYGIENE* .0 0 0.0 X-READING* (INATTN) .0 0 0.0 X-READING* (INATTN) .1 100.0 s-NOT STATED .2 0 0.0 -DOES NOT APPLY .3 1NATTENTION CODES EFF. 01-01-01
PCT	111.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	71.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.4 1NA
		0 10 0 0 0 0 0 0 10 0 10
NUMBER PCT CODE	ALR 33 42.8 B-PROOL JOK 0.0 D-MAK TRALR 1 1.2 E-MAK TRALR 1 1.2 E-MAK TRALR 1 1.2 G-BAC TRALR 0 0.0 J-CHAR TRALR 0 0.0 J-CHAR TRALR 0 0.0 J-CHAR TRALR 0 0.0 G-PAR TRALR 0 0.0 G-TRVI	1.2 <-NOT STATED 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3
PARTY TYPE PCF CODE		0 0.0 N-OTHER-NON-MOTOR 1 1.2 O-SPILLED LOADS 0 0.0 P-DISENGAGED TOW 0 0.0 P-DISENGAGED TOW 0 0.0 R-MOPED 0 0.0 T-TRAIN 0 0.0 U-PEDESTRIAN 0 0.0 U-PEDESTRIAN 0 0.0 V-DISMOUNT PEDESTR 1 1.2 W-ANIMAL - LIVESTC 0 0.0 X-ANIMAL - DEER 0 0.0 Z-ANIMAL - OTHER <direction of="" travel=""></direction>
NUMBER	41 12 4 1 1 0 0 0 0 1 1 2 0 0 0 0	NUMBER NUMBER

*SPECIAL INFORMATION CODES EFF: 04-01-01

0.0 A-HAZARDOUS MATERIALS
0.0 B-CELL PHONE IN USE*
5.1 C-CELL PHONE NOT IN USE*
3.8 D-CELL PHONE NONE/UNKNOWN*
93.5 <-NOT STATED
0.0 --DOES NOT APPLY
0.0 --INVALID CODES

0 4 4 7 2 0 0

0.0 N-N, NE, NW BOUND 1.2 S-S, SE, SW BOUND 51.9 E-EASTBOUND 74.0 W-WESTBOUND 3.8 <-NOT STATED 0.0 --DOES NOT APPLY

0 1 40 3 8

PAGE

06-30-96/07-01-01

DENTS		
E	311	
	1	
ACCI	1RY	
ALL	SUMMAL	
021.440	PARTY	
0.2		
_	9 1	
940	1	

	TON	CODE	A-BEYOND MEDIAN OR STRIPE-LFT		TOUTDER		E-INTERIOR LANGE	DESTRUCTION OF THE PROPERTY OF	TAIN AND THE PARTY AND THE PARTY OF THE PART		H-BEYOND SHEDER DRIVERS RIGHT	I-GORE AREA	J-OTIIER	V-HOV LANE(S)	W-HOV LANE BUFFER AREA	STATED	DORS NOT APPLY	- TNVALID CODEG									AL	TODE		A-HAD NOT BEEN DRINKING	B-HBD - UNDER INFLUENCE	,	1	S.R		G-IMPATRMENT NOT KNOWN	H-NOT APPLITCABLE	T-FATTGHE	COLUMN TOWNS	LOSE NOT APPLY	INVAL TO CODES	-INVALLE CODES	* 25		*	
	OF COLLISION	PCT	0.0	10.3	0.0	11.6	0.0	16.9	0.0	T. 2	77.0	0.0	0.0	0.0	0.0	0	100.0	0 0						*			DRUG/PHYSICAL	PCT	,	0.0	0.0	0.0	0	0.0	1.2	0.0	0.0		0.80	000			-,			
200		NUMBER	0	8	0	6		, ,	1	4 1	1/	0	0	0	0	0	77										DRUG/	NIMBER		0	0	0	0	0	1	0	0	0	76	0 0	0 0	0				
1001	LOCATION	2			(E)																							2	9										8							
	PRIMARY	PCT	0.0	9.0	0.0	20.7	0 0	16.35			55.B	0.0	0.0	0.0	0.0	0.0	14.2	0									E1'Y	PC'I'		79.2	16.8	2.5	0.0	0.0	0.0	5.1	0.0	0.0	3 8							
	PRIM	NUMBER	0	7	0	.16	0	28	2		4.5	0	0	0	0	0	11	0									SOBRIETY	NUMBER		. 61	13	2	0	0	0	4.	0	0			0		90	ē		
,																											-																			
			01-SIDE OF BRIDGE RAILING	02-END OF BRIDGE RAILING	03-PIER, COLUMN, ABUTMENT	04-BOTTOM OF STRUCTURE	05 BRIDGE END POST IN GORE	0	7-RRIDGE A	OC THAT O	٤,		>4		14-OTHER SIGNS NOT TRAFFIC	-15-GUARDRAIL	16-MEDIAN BARRIER	17-WALL (EXCEPT SOUND WALL)		-	gr.	T O NOOT THE OWN THE OWN THE	ONCABLE ONTABLE	22-GUIDEPOST, CULVERT, PM	23-CUT SLOPE OR EMBANKMENT	24-OVER EMBANKMENT	25-IN WATER	26-DRAINAGE DITCH	27-FENCE	28-TREES	29-PLANTS	30-SOUND WALL	40-NATURAL MATRL ON ROAD	41-TEMP BARRICADES, CONES	42-OTHER OBJECT ON ROAD	43-OTHER OBJECT OFF ROAD	44-OVERTURNED	45-CRASH CUSHION (SAND)	46-CRASH CUSHION (OTHER)	-CALL BOX	98-	99-NO OBJEC	THRU V9	<not stated<="" td=""><td> DOES NOT APPLY</td><td>0</td></not>	DOES NOT APPLY	0
JCK	OTHERS	PCT	0.0	0.0	0.0	0.0	0.0	0.0	0			1.2	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0				3.8	7.7	0.0	0.0	0.0	1.2	1.2	0.0	0.0	0.0	0.0	5.1	33.7	0.0	0.0	0.0	0.0	0.0	10.3	0.0	100.0	0.0
STR	O.T.	NUMBER	0	0	0	0	0	0	0			- 1	0	Н	0	0	0	0	0	0	0	C	0 0	0	7	9	0	0	0	Н	1	0	0	0	0	4	26	0	0	0	0	0	8	0	77	0
-OBJECT STRIICK-		5 N												1														21				55														
-														5.5															3																	
1 1 1 1 1 1	ARY	PCT	0.0	0.0	0.0	0.0	0.0	0.0						5.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		1.2	23.3	0.6	0.0	2.5	3.8	1.2	0.0	0.0	0.0	0.0	1.2	3.8	16.8	0.0	0.0	0.0	0.0	3.8	24.6	0.0	12.9	0.0
· · · · · · · · · · · · · · · · · · ·	PRIMARY	NUMBER	0	0	0	0	0	0	0	0		NI C	0	4	0	0	0	0	0	0	0	C		٠,	18	7	0	2	3	П	0	0	0	0	М	m	13	0	0	0	0	m	19	0	10	0
																		6																												

PAINEY TO NEGT OF COUSEN

AXR330-CONTROLS REQ NO 4115

TASAS SELECTIVE RECORD RETRIEVAL 017.866/ 018.939 ALL ACCIDENTS SD 076

PAGE

06-30-96/07-01-01

- MESSAGES -

ACCIDENTS SELECTED

25

CATHY

SUBMITTORS NAME

SUBMITTORS DISTRICT B1

LOCATION CRITERIA

017.866 E FROM OR FROM OR FROM POSTMILE DISTRICT 11 ROUTE 076 COUNTY SD

018.939

10 10 10

AND

DATE RANGE FROM OR FROM OR FROM

TO 07-01-01 TO TO 96-06-90

ACCIDENT AND HIGHWAY CRITERIA - NONE

A32

	-																														
2	SD P	Ac	Ac	A	Ac	Ac	Ď,	A G	A	A	AK	Ax	B<	Ac	A	MI	A	Ac	Ğ	A	Ac	A	A<	A	Ye	AV	Ac	Ac	A	A	A<
	20>	Σ		m m	38 (1)															В	Z									U	
PAGE	0A F	NA	N J	ZZ	N	ž:	ž:	Y Z	12	LA	ž	ž	9	ž	ž	9	L	5	ž	×	2	ž	×	ž	ž	N	N	N	×	×	×
PA	COL	L	1 1	1.1	1	1 3	H	1 1		1	1	ĭ	1	ì	;	1	1	1	£	1	1	į.	1 1	1	1	į.	1	1	1	i.	1
	000	1	1. 1	3 3		+ (N	1 1	1		1	1	1	1	1	1	9	1	1	1	3	1		1	E	1	7		3	15	1
	0 0 0	1	1 1	1 1	1 1	2711	4 4 11			1	1	1	1	1	:	1	1	i	-	\$ 1	1	P I	1	1	1	1	1	1	1	1	1
	200		1 [1	1 1	ī						311	1	1	BII	11	40	38	311	10	ŗ	1	iii Di	D	12	T.	Ē	r	-1	9	411	£
7.7	000	1	1 4	11	1	4		40	1 4	्प	-	1	1	CA	4.411	4	ব	2	ì	1	1		V2D	VIF	1	į.	1	1	1	44	ì
0 0	OC	2D	VID	VIF	VID	2411	131	4411	3.1	411	4 5	38	311	411	1111	2313	23B	26.11	V2D	VIE	V2D	VIF	44E	1	411	1	V2D	VIF	611		311
-19	0 8 4	. >																							0					0 2	
02/07	RSN																				0.5		01		00				0	0	0
/96	E X		00	00	00	00	0 0	0 0	00	00	0.0	00	00	00	00	00	00	00	00	00	00	00	00	00	0	00	00	00	00	00	00
	SH	V	v v	VV				v v												V	- 3				٧				٧	3	٧.
6-30	D U N	63		E E E																1 3				E 1					2.0	M	
90	D H	Q		0 0																								(1)			
	NO MTR VEII	2	2	2		н,	4 +	10		-	H	н	1	_	-	ı	-	Н	2		7		7		7		0.2		1	0.1	Н
	HOU	0 0	0 0					4 64													A. 0		E O		E		0			0 3	
	M E U	D	Z,					A													Ω		Ω		2		Ω			0	
	K U	Ξ	Ξ	H	9	=:	= =	: =	=	=	=	=	=	2	=	=	=	=	=		=		=	34	=		Ξ		Ξ	Η	=
L)	IR D	K	K					4													П		K		<		B			<	
EVA	COND W L	AD	A D				9	A D													0		A B		AA		BA			A D	
RII	200	ব	9	E				0 -													9		70		9		S			n	
RECORD RETRIEVAL	Z Z Z	29	91	15		9 1		82			11		25	78	93		15		63		22		99		63		92	3	25	0.4	99
D	COMMON ACCIDENT NUMBER	25	30	16	1	65	7 7 7	07	23	7	21	14	13	23	30	13	23	33	26	1	0.5		24		26		21		132	0730	24
AC	COMMC	851	851	850		058	0 1	951	S	851	5	5	S	S		5		2	851	- 1	851	- 1	851		851	- 3	851	1 (1	S.	850	rU.
RECORD LL. ACCI	A	96	96	96	1	94	0 4	96	9	B	9	9	9	9	0	9	0	9	96	23	96	- 9	96	- 03	96	- 9	96	- 33	9	96	8
/E	南京	5	20	35		0 0) L	30	50	20	1.5	30	55	00	30	30	00		20		20		40		20		20			4.5	
ECTIVE.	TIME	17	19	0.9		2 5		003	19	20	13	16	13	17	14	02	16	~	13	- 13	77	- 0	0.5		14	- 9	15	8	0	0	18
LEC 8.9	IDE	00	96	66		0 0	3 0	66	1.6	66	66	96	96	1.6	96	1.6	1.6	1.6	01		01	3	2.6		96	9	0.1				2.6
SEL 018	ACCIDENT DATE TI DA YR HH	1	1	7-	,	1	7 0	1	2	-	3-	6	0	9	2	4	ż	-0	-	-	9	9	e e		0	9	0	3	2	9	2-
AS 6/	Ω.	2-2	0-1	6-1		0 - 0	1	4-1	1	2-3		1	1			- 1	1		1		5-2		4-2		0-2		2-1		1	8-1	1
TASAS.	MO	-	Ч	0		0 0	> -	0	0	H	0	-	-	0	-	-	-	7	0	1	0	14	0		-	9	0		0		0
	O S D	M 7	3	5				E 1													E		22		T ×		2			3	
0.1	H M H	5	S	1		, ,	ì		1	,	1	ı,	ī	ŧ	ī				,		ě		į.		ı	-	ī		ı	1	1
. 9	VEF	\vdash	H	Ξ	-	= =												=			Ξ		Ξ		Ξ		Ξ			=	
0.7	RI	RO	RO	RO	5	2 2	2 2	202	RO	RO	202	202	202	80	80	202	200	RO	2	1	200	1	20		2		RO		20	20	RO
SD	1000	0.1	0.1	0.1	. +	7 0	10	01	0.1	01	01	01	01	0.1	01	01	01	0.1	0.1		01	1	0.1		0.1		01		01	01	01
CO	HIGHWAY- M B LANES T A LT RT	01	100	01	-	100	110	0.1							11)1	11	0.1	11	1	0.1	1	01	1	0.1		0.1		01	01	0.1
	IGI B I A I	2	2 3	. Z				2													7		2		7		2			2	
	H-XT.	B	В	Ш	0	0 0	m	В	В	В	ш.	m i	m	m	В	В	8	m :	В		n	1	В	\$	B	1	m	1	B	α .	m
	IAU	C	O	C				U													5		U		7		U			0	
	^ H D	n 9	0 9	0 0	-			0 0															0		2		0			0	
	日田	98	.866	88	000	0 -	020	270	270	.300	300	300	350	3.1	376	3	-	520	290	,	009	(. 600	(900		700		800	. 800	800
	LOC POST MILE	-	-	7.	13	. α	. 8	8	8	8	00	8	00	8	3	8	8	8	H		n		8		œ Q	3		- 3	8	8	8
AII	E E E	0.1	0.1	01	C	0 0	0	0.1	0	0	0	0	0	0	0	0	0	5	0		TO	0	01	(70	3	01		0	0	0
ET		_	0	_			0	_	^	0	0	^	-	~	_	^	_	~ .			_				_				0	~	~
ACC-DETAIL	8	SD	SD	SD	. 0	S	S	· SD	S	SI	S	SD	S	S	SI	SD	SD	SD	SD		2	ć	SD	C	SD	(S		S	SD	S
ACC 411	RTES U NO F	920	91	91	260	970	97.0	920	9/	9/	9	9	9/	91	9/	9/	97.0	9	9/		d/	,	9/	,	9/		9/	1	9/	9/	9/
		0.7	07	0.7	C	0	0	0	97.0	97.0	076	97.0	0.76	076	97.0	91.0	0	076	0.76	0	0	(0	0	0		0.7		0	0.7	0
AXR330 REQ NO	LST	11	11	11	-	1 -		11	7	7	٦.	٠.	7	7	17	1	7	7	=		11		11	9	11		11		-	11	1
A.	DI	-			-			-	-					e=00		etil	ent i				-01	,					-06	0	erri II	eel U	1016

PAGE	947			S CODED PCT CODE		32.0 2 0.0 3 0.0 4			0.0					¥2			WEEK	CODE	1-SUNDAY	2-MONDAY	3-TUESDAY	4-WEDNESDAY	5-THURSDAY	6-FRIDAY	7-SATURDAY							
02-19-02	ō.			LINES	17	800	00	000	0								-DAY OF		4.0	12.					28.							
02-19-02			54 15	MOTOR VEHICLES INVOLVED NUMBER PCT CODE	0.89	8 32.0 2 0 0.0 3 0 0.0 > 3	100	DE OF HIGHWAY>	7	0.0 N-NORTHBOUND	GA O S-SOUTHBOOND	36.0 W-WESTBOUND	- 65				HILLIAND WINDOW		01-JANUARY	02-FEBRUARY 3	03-MARCH 4	04-APRIL	-MAY .		-JULY	08-AUGUST	09-SEPTEMBER	10-OCTOBER	11-NOVEMBER	12-DECEMBER		14
RETRIEVAL IDENTS	3Y YS	0	5	MO'F	15	2		ALIMBED		0	9,5	9					TINONIH		4.0		0.0		4.0	16.0	0.0	3 12.0			0.8	4 16.0		
SELECTIVE RECORD RETRIEVAL 018,939 ALL ACCIDENTS	- ACCIDENT SUMMARY			PERSONS KILLED IN				NTROL		C-CONVENTIONAL	F-FREEWAY	S-1-WAY CITY ST	INVALID DATA	+-NO DATA			CODE MIMBER		1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001			
TASAS 017.866/	1			PDO	13			-ACCESS CONTROL		10	0.0	0.0	0.0	0.0		0 4 0 5	1		0.0	0.0	0.0	0.0	0.0	20.0	28.0	0.0	20.0	12.0	20.0			
SD 076				INJURY	10			NIMBER		25		0	0	0			NUMBER		0	0	0	0	0	5	7	0	2	2	5			
	E		39	FATAL	2			DAY>		00- 12 MID.	1 7	ŗ	4	2	0 0		9 0	10	11	12	1	5	m	4	2	9	7	1	6 -	- 10	3	25- UNKNOWN
MARY					500			R OF P	2	0.0	4.0	0.0	4.0	4.0	0.0	0.4	4.0	0.0	0.0	0.0	12.0	12.0	4.0	8.0	8.0	4.0	12.0	8.0	4.0	0.0		0.0
AXR330 ACC-SUMMARY RLQ NO 4115				TOTAL	25	WITHOUT		COD NUMBER PCT COD		н с) ₋	0	1	н с	o -	-	(0	0					. 5	2				-	0	0	0

4			ц			^NC	XIT) STREET TATE RTE
02-19-02 06-30-96/07-01-01	: ::::::::::::::::::::::::::::::::::::	CONDITION	A-HOLES, RUTS B-LOOSE MATERIAL C-OBSTRUCTION ON ROAD D-CONSTRUCT-REPAIR-ZONE E-REDUCED ROAD WIDTH F-FLOODED G-OTHER H-NO UNUSUAL CONDITION <-NOT STATED	A	A-DRY B-WET C-SNOWY, ICY D-SLIPPERY <-NOT STATED -INVALID CODES	OR RAMP ACCIDENT LOCATION- CODE	1-RAMP INTERSECTION (EXIT) 2-RAMP 3-RAMP ENTRY 4-RAMP AREA, INTERSECT STREET 5-IN INTERSECTION 6-OUTSIDE INTRSCT-NONSTATE RTEDOES NOT APPLY
96-30-96	12)	ROADWAY C	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	SURFACE PCT CODE	K M O D V	SECTION	0.0 0.0 0.0 0.0 0.0
0		1	24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OAD	0.0 0.0 0.0 0.0	<pre><intersection number="" pct<="" pre=""></intersection></pre>	000000000000000000000000000000000000000
	===	NUMBER		NUMBER	217 0 0 0 0	÷	E .
TASAS SELECTIVE RECORD RETRIEVAL 017.866/ 018.939 ALL ACCIDENTS	ACCIDENT SUMMARY	<pre>< NUMBER , PCT CODE</pre>	2 8.0 A-HEAD-ON 0 0.0 B-SIDESWIPE 0 0.0 C-REAR END 4 16.0 D-BROADSIDE 15 60.0 E-HIT OBJECT 4 16.0 F-OVERTURN 0 0.0 H-OTHER 0 0.0 H-OTHER 0 0.0 <-NOT STATED 0 0.0 -INVALID CODES	R PCT CODE	13 52.0 A-DAYLIGHT 1 4.0 B-DUSK/DAWN 0 0.0 C-DARK-STREET LIGHT 11 44.0 D-DARK-NO STREET LIGHT 0 0.0 E-DARK-INOPR STREET LIGHT 0 0.0 F-DARK-NOT STATED 0 0.0 <-NOT STATED 0 0.0 -INVALID CODES	> <highway group<="" td=""><td>1NG 0 0.0 R-IND. ALIGN-RIGHT 0 0.0 L-IND. ALIGN-LEFT 0 0.0 D-DIVIDED 25 100.0 U-UNDIVIDED</td></highway>	1NG 0 0.0 R-IND. ALIGN-RIGHT 0 0.0 L-IND. ALIGN-LEFT 0 0.0 D-DIVIDED 25 100.0 U-UNDIVIDED
SD 076		FACTOR>	1-INFLUENCE ALCOHOL 2-FOLLOW TOO CLOSE 3-FAILURE TO YIELD 4-IMPROPER TURN 5-SPEEDING 6-OTHER VIOLATIONS B-IMPROPER DRIVING C-OTHER THAN DRIVER D-UNKNOWN E-FELL ASLEEP <-NOT STATED -INVALID CODES	NUMBER	TED	UMBER PCT CODE	A-CONTROL FUNCTIONING B-CONTROL NOT FUNCTIONING C-CONTROLS OBSCURED D-NO CONTROLS PRESENT <-NOT STATED
		CODE	1-INFLUENC 2-FOLLOW T 3-FAILURE 4-IMPROPER 5-SPEEDING 6-OTHER VI B-IMPROPER C-OTHER TH D-UNKNOWN E-FELL ASL <-NOT STAT -INVALID	CODE	A-CLEAR B-CLOUDY C-RAINING D-SNOWING E-FOG F-OTHER F-OTHER G-WIND	F WAY C	A-CONT B-CONT C-CONT D-NO C
ACC-SUMMARY 4115		ARY COL	12.0 24.0 34.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-WEATHER	84.0 12.0 0.0 0.0 0.0	RIGHT O	16.0 0.0 0.0 84.0
AXR330 ACC-S		<pre><primary code<="" coleision="" number="" pct="" pre=""></primary></pre>		NUMBER	21 1 3 0 0 0 0	NUMBER	4 0 0 21 0

AXR330 ACC-SUMMARY REQ NO 4115

2

URD REIRIEVAL	ACCIDENTS	
E RECORD	ALL	
SELECITY	018.939	
INSAB	017.866/	
	910	
	SD	

100
1:
10
-
Sec. 4
120
-
150
100
~
dies
Σ
die
100
-
S
2
-
1000
-
-
C.
- Said
1
- 10

35%	>	PART	PARTY TYPE'	.> <	MO	VEME	NT PR	<movement collision="" preceding=""> <</movement>	1 7	- EC 4	OTHER		OCIAT	ASSOCIATED FACTOR	
	NUMBER	FCI.	CODE		NUMBER	H H	FCI.	AUCO	T #	PC1		7	PCL	CODE	
	15	60.03	A-PASNGR CA	A-PASNGR CAR/STA WAGON		0	0.0	A-STOPPED	0	0.0		0	0.0	1-INFLUENCE ALCOHOL	
	0		B-PASNGR CAR W/TRALR	R W/TRALR	9	10		B-PROCEDED STRAIGHT	0	0.0		0	0.0	2-FOLLOW TOO CLOSE	
	2		C-MOTORCYCLE	<u>a</u>		12	48.0	C-RAN OFF ROAD	0	0.0		0	0.0	3-FAILURE TO YIELD	
	9	24.0 I	D-PICKUP/PANEL TRUCK	NEL TRUCK		0	0.0	D-MAKING RIGHT TURN	0	0.0		0	0.0	4-IMPROPER TURN	
	3	100	E-PICKUP/PA	E-PICKUP/PANEL W/TRALR		1	4.0	E-MAKING LEFT TURN	2	8.0		0	0.0	5-SPEEDING	
	0	0.	F-TRUCK/TRU	-TRUCK/TRUCK TRACTOR		0	0.0	F-MAKING U TURN	2	8.0		0	0.0	6-OTHER VIOLATIONS	
100	2		G-TRK/TRACTOR	TOR & 1 TRALR	ğ	0	0.0	G-BACKING	0	0.0		0	0.0	A-CELL PHONE* (INATTN)	
	1		2-TRK/TRACTOR	¥	ų.	0	0.0	H-SLOWING, STOPPING	0	0.0		0	0.0	B-ELECTRONIC EQUIP* (INAT'IN)	
	0	0.0	3-TRK/TRACTOR	TOR & 3 TRALR		٦	4.0	I-PASS OTHER VEHICLE	0	0.0		0	0.0	C-RADIO/CD/HEADPHN* (INAT'TN)	
	0		4-SINGLE UNIT	HIT TANKER		0	0.0	J-CHANGING LANES	0	0.0		0	0.0	D-SMOKING* (INATTN)	
	0		5-TRK/TRA & 1	. 1 TANK TRLR		0	0.0	K-PARKING	0	0.0		0	0.0	E-VISION OBSCUREMENT	
	0		6-TRK/TRA &	2 TANK TRLR		0	0.0		0	0.0		0	0.0	F-INATTENTION - OTHER	
	0		H-SCHOOL BUS	IS		4	16.0	M-OTHER UNSAFE TURN	0	0.0		0	0.0	G-STOP & GO TRAFFIC	
	0		I-OTHER BUS			٦		'N-CROSS INTO OPP LN	0	0.0		0	0.0	II-ENTER/LEAVE RAMP	
	2	0.8	J-EMERGENCY VEHICLE	VEHICLE		0	0.0	O-PARKED	0	0.0		0	0.0	I-PREVIOUS COLLISION	
	0		K-HIGHWAY CONST EQUIP	CONST EQUIP		0	0.0	P-MERGING	1	4.0		0	0.0	J-UNFAMILIAR WITH ROAD	
	0	0.0	L-BICYCLE			0	0.0	Q-TRVL WRONG WAY	0	0.0		0	0.0	K-DEFECT VEHICLE EQUIP	
	0	0.0	M-OTHER-MOTOR VEH	TOR VEH		0	0.0	R-OTHER	2	8.0		0	0.0	L-UNINVOLVED VEHICLE	
	0		N-OTHER-NON-MOTOR	1-MOTOR VEII		0	0.0	<-NOT STATED	0	0.0		0	0.0	M-OTHER	
	0	100	O-SPILLED LOADS	OADS					20	80.0		0	0.0	N-NONE APPARENT	
	0		P-DISENGAGED TOW	WOT OF				PEDESTRIAN	0	0.0		0	0.0	P-WIND	
	0		Q-UNINVOLVED VEHICLE	3D VEHICLE		0	0.0	2-XING XWALK-INTRST	0	0.0		0	0.0	R-RAMP ACCIDENT	
	0		R-MOPED			0	0.0	3-XING XWALK-NO'T INTR	0	0.0		0	0.0	S-RUNAWAY	
	0	-	T-TRAIN			0	0.0	4-XING NOT XWALK	0	0.0	1	0	0.0	T-EATING* (I	
	0		U-PEDESTRIAN	IN N		0	0.0	5-ROADWAY-INCL SHLDR	0	0.0		0	0	U-CHILDREN*	
	0	14.	V-DISMOUNT PEDESTRIAN	PEDESTRIAN		0	0.0	6-NO'T IN ROADWAY	0	0.0		0	0.0		
	0	0.0	W-ANIMAL -	LIVESTOCK		0	0.0	7-APRII-LEAVE SCIIL BUS	0	0.0		0	0.0		
	0	_	ŧ:	DEER		0	0.0	-INVALID CODES	0	0.0		0	0.0		10
	0	0.0	Z-ANIMAL -	OTHER					00	0.0		72	0.00	DOES NOT APPLY	
		THE PERSON AND THE	TOTA CITY CO.	200000000000000000000000000000000000000			Jago	CORCIAL INFORMATION.)			
	VOMBER NUMBER	PCT	NUMBER PCT CODE		NUMBER	SER	PCT	CODE		NI.	*INATTENTION	NTION	CODES	ES EFF. 01-01-01	
	1	4.0	NE,	W BOUND		0	0.0	A-HAZARDOUS M						o u	
	0	0.00	S-S, SE, SW	SW BOUND		0,0	0.0	B-CELL PHONE IN USE*	2				*		
	10	40.0	W-WESTBOUND			o -1	4.0		*N.						
	0	0.0	<-NOT STATED	GD.		24	0.96	<-NOT STATED							
	0		DOES NOT APPLY	APPLY		0	0.0	DOES NOT APPLY						786.3	
						0	0.0	-INVALID CODES							

UMMARY	
3	ın
ACC	4115
130	NO
AXR3	REO

TASAS SELECTIVE RECORD RETRIEVAL 017.866/ 940

19

PAGE

02-19-02

018,939 ALL ACCIDENTS

- PARTY SUMMARY - -

SD

H-BEYOND SHILDER DRIVERS RIGHT A-BEYOND MEDIAN OR STRIPE-LFT B-BEYOND SHILDER DRIVERS LEFT B-HBD - UNDER INFLUENCE C-HBD - NOT UNDER INFLUENCE E-UNDER DRUG INFLUENCE F-OTHER PHYSICAL IMPAIRMENT G-IMPAIRMENT NOT KNOWN D-HBD - IMPAIRMENT UNKNOWN A-HAD NOT BEEN DRINKING V-HOV LANE(S) W-HOV LANE BUFFER AREA G-RIGHT SHOULDER AREA C-LEFT SHOULDER AREA H-NOT APPLICABLE -- DOES NOT APPLY E-INTERIOR LANES F-RIGHT LANE -- DOES NOT APPLY -INVALID CODES -INVALID CODES <-NOT STATED <-NOT STATED D-LEFT LANE I-GORE AREA I-FATIGUE J-OTHER. CODE ---DRUG/PHYSICAL----LOCATION OF COLLISION-00000000 4.0 96.0 0.0 PCT 0.0 0.0 40.0 8.0 0.0 0.0 0.0 0.0 0.0 0.96 OTHERS 0 0000 NUMBER NUMBER 0.0 0.0 0.0 16.0 20.0 <----SOBRIETY-PRIMARY 22 NUMBER NUMBER 05 BRIDGE END POST IN GORE 06-END OF GUARD RAIL 07-BRIDGE APPROACH GRD RAIL 14-OTHER SIGNS NOT TRAFFIC 16-MEDIAN BARRIER 17-WALL (EXCEPT SOUND WALL) 21-CONCRETE OBJ (HDWL, D.I.) 22-GUIDEPOST, CULVERT, PM 23-CUT SLOPE OR EMBANKMENT 41-TEMP BARRICADES, CONES 42-OTHER OBJECT ON ROAD 13-TRAFFIC SIGN/SIGN POST 01-SIDE OF BRIDGE RAILING 12-POLE (TYPE NOT STATED) 13-OTHER OBJECT OFF ROAD 98-UNKNOWN OBJECT STRUCK 40-NATURAL MATRL ON ROAD 02-END OF BRIDGE RAILING 10-LIGHT OR SIGNAL POLE 03-PIER, COLUMN, ABUTMENT 46-CRASH CUSHION (OTHER) 04-BOTTOM OF STRUCTURE 45-CRASH CUSHION (SAND) 99-NO OBJECT INVOLVED 24-OVER EMBANKMENT 19-TRAFFIC ISLAND 26-DRAINAGE DITCH 11-UTILITY POLE 18-DIKE OR CURB 20-RAISED BARS 30-SOUND WALL 44-OVERTURNED S-GUARDRAIL 51-CALL BOX 25-IN WATER 29-PLANTS 27-FENCE 28-TREES 0.0 0.0 0.0 4.0 0000000000400000000 4.0 8.0 0.0 0.0 0.0 0.0 PCT -- OBJECT STRUCK-OTHERS NUMBER 0.0 16.0 0.0 8.0 PCT PRIMARY NUMBER

VI THRU V9-VEHICLE 1 TO 9

<--NOT STATED

-INVALID CODES

PAGE

06-30-96/07-01-01

TASAS SELECTIVE RECORD RETRIEVAL SD 076 R017.169/ 017.866 ALL ACCIDENTS

AXR330-CONTROLS REQ NO 4087

刊

- MESSAGES -				DATE RANGE FROM 06-30-96 TO 07-01-01 OR FROM TO			TO PANKELY
av	a	· .		R017.169 TO 017.866 TO TO	EQ II	e e e e e e e e e e e e e e e e e e e	I-15 SB I
SUBMITTORS DISTRICT B1	SUBMITTORS NAME CATHY		LOCATION CRITERIA -	DISTRICT 11 POSTMILE FROM R ROUTE 076 OR FROM COUNTY SD OR FROM	ACCIDENT AND HIGHWAY CRITERIA -		

5			12	A<		Ac	è,	Ac	Ac	A A	·Ac	A<			: Ac				: Ac	Ac	A A
臼	OA M	0.	2 4	Q v	< B	H > A	N< B	N > B	H< B	N< A	N > A	N< B	N > E	N< B	N< E	F< B	N < A	F< B	N< E	N< B	N > A
PAGE		0	-	N.	(II													1	Z	Z	
		S		1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1
		S		1	1 1	1	1	1	1	:	1	1	1	1	1	1	1	1 1	1	1 1	1
	1	0 8	U	1	1.1	I I I	1 1	4311	1	V3J	V2J	1	1	13B	1 1	1	1	-		1 1	1 1
-02	Γ	0	υ	4 5	V2F	VIF.	V2F	VIF	V2J .	VIJ		V2F	VIF.	V2F	VIE	V2J	VIJ.	V2B	VIJ	VZF	VIF
06-30-96/07-01-01		IS	Д	11 4	V 0	V 01	V 0	V 0	V 00	02 V	- 00	11 V	1 V	0 0 V)1 V	0 0 V	V. 00	00	00	V 00	00
5/07	PERSN	×		000	000	000	00	0.0	00	00	00	00	00		00		00	00			00
-96		н		V	v	v	v	v	v	V	v	v	V	V	V	V	v	v	v	v	v
-30	>	=	Н	Н	Н	٦	Н	Н	٦	Н	٦	Н		Н		Н	Н	m	Н	Ч	٦
90		Η.	R	M	A	X	M	M	A E		A E		NO								MO
20	14	-		-	R.	F4.	14	14	*	-	14	-	-	щ	7	-	-	н	-	-	1
	NO	MTR	VEII	0.1	02		02		03			02		02.		02		02		02	
	H	0	Ü		U		U		U			Ω		Q		U		В		υ	
	×	3	O		A		П		d			A		K		A		Q		H.A	
2.	ĸ	U	- G	5			= 1		H			Ξ		H		A H		=		AH	6
AL.	ENVIR	9	L S	- C	AA		DA		A A			A		AA		A		BA		A	
E	EN	COMP	3	0			K		K			K		В		В		В		A	
TRI	Ц	U	(r	U	9		2		2			9		9		2		9		10	
REDE	Z	LN	3K	909	104		376		999	1		529		991		550		942		315	
CC1	COMMON	IDE	NUMBER	506506	073		5133		2096			125		124		990		100		086	
RECORD RETRIEVAL ALL ACCIDENTS	00	ACCIDENT	N	685	685073		9685		3685			968512		9685124		968506650		968510		968508615	
142	á			9	9																
IVE 6	L	TIME	HHIMM	0550	245		0125		1110			1410		1430		1255		1645		1610	
SELECTIVE 017.866	ACCIDENT	H			H		8 0													0	
EL.	CI	E	MO DA YR	10-24-97	1.6-9		0-61-10		10-01-00			21-97	i i	05-18-97		05-05-98		01-03-97		12-01-00	
	A	DATE	DA	-24	05-26		-15		-07		27.	-21		-18		-0		0-		-01	
TASAS			MO	10	0.5		07		10			33-		0.5		0.5		01		12	
TASAS R017.169/		<		9			7		1 1			9		H		m		9 1		9 1	
301		30	H	3	3		3		· 田			1		Ξ.		<u>ا</u>		× 1		1	
	٨	ſ±,	H	=	Ξ		H		=			H		Ξ		Н		H		11	
920	1	RI	00	RO II - W	RO 11 -		RO		RO			RO		RO		RO		RO		RO	
SD	<> I	H A M B LANES RI F R	RT	R017,210 D C H Z 01 01	0.1		R017.240 D C H Z 01 01 RO H -		R017.310 D C H Z 01 01 RO H -			R017.310 D C H Z 01 01 RO H - E		R017.400 D C H Z 01 01 RO H - E		R017,410 D C H Z 01 01 RO H -		R017,410 D C H Z 01 01 RO H - W		R017.430 D C H Z 01 01 RO H - W	
CO	HWA	LAN	E	0.1	01		01		0.1			01		01		01		01		01	
	IIG	В	A	2	Z	1	2		2			Z		2		2		2		2	
	1	Z	H	H	Ξ		H		H	*		H		H		H		Η		Ξ	
22	1	A	C	U	U O		U		C			U C		O		C		C		C	
3	·	==	О	0	0		0		0			0		0		0		0		0	
		E.	Œ	21	23		24		31			31		40		41		41		43	
	200	POS	4II	17.	17.		17.		17.			17.		17.		17.		17.		17.	
TAI	P LOC	R POST	<u>ы</u>	RO	RO		RO		RO									RO			
AXR330 ACC-DETAIL REQ NO 4087			00	SD	SD		SD		SD			SD		SD		076 SD		SD		SD	
ACC-1	RTES	D	DIST NO F CO	910	910		920		940			920		940	11	921		076		920	
330 NO	K		Z																		
AXR330 REQ NO			DIS	11	11		11		11			11		11		11		11		11	

- - - ACCIDENT SUMMARY - -

æ	SS CODED . PCT CODE	11.1			0.0			0.0		22							WEEK	CODE		1 - STINDAY	Z-MONDAY	3-TUESDAY	4 - WEDNESDAY	5-THURSDAY	6-FRIDAY	.7-SATURDAY					çe		
	LINES	н	1	0 (00	0 0	0	0									DAY OF	PCT		22 2	11.1	11.1	0.0	0.0	44.4	11.1					3	2.4	
	30.30			3		^			Q	ē	0	0					S DAY OF	NUMBER		2	٦	П	0	0	4	Н		4					•
	INVOLVE PCT CODE	.1 1	7 7	^ 0.		Y	DE		N-NORTHBOUND	S-SOUTHBOUND	E-EAST'BOUND	M-WESTBOUND													-								8
	CLES	1 11	1 11.1			OF HIGHWAY	r CODE										^			UARY	RUARY	CII	III		Œ	X,	TSUS	09-SEPTEMBER	OBER	11-NOVEMBER	12-DECEMBER		
	TOR VEHI										44	55.5					HJ.NOM-	CODE		01-JANUARY	02-FEBRUARY	03-MARCII	04-APRIL	05-MAY	06-JUNE	VIUC-70	08-AUGUST	09-SEF	10-OCTOBER	1.1 - NOV	12-DEC		
		9		-		<side< td=""><td>NUMBER</td><td></td><td>0 (</td><td>0</td><td>4</td><td>r)</td><td></td><td></td><td></td><td></td><td>NOM</td><td>PCT.</td><td></td><td>11.1</td><td>0.0</td><td>11.1</td><td>0.0</td><td>33.3</td><td>0.0</td><td>11.1</td><td>0.0</td><td>0.0</td><td>22.2</td><td>0.0</td><td>11.1</td><td></td><td></td></side<>	NUMBER		0 (0	4	r)					NOM	PCT.		11.1	0.0	11.1	0.0	33.3	0.0	11.1	0.0	0.0	22.2	0.0	11.1		
	NS INJURED					^			AL.			ST	I'A				1 1 1 1	NUMBER		н	0	7	0	Ć,	0	1	0	0	2	0	1		
	PERSONS ED	0				1 1 1 1		COMPENSION	ENTION.	E-EAPKESSWAY	MAY	S-1-WAY CITY ST	INVALID DATA	ATA			>								(*)								
	KILLED					NTROL	CODE	CINOD D	C CON	E-EAPK	F-FREEWAY	VM - T - S	LANI	+-NO DATA			A 1	CODE		1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001		*	
	PDO	Ŋ				ACCESS CONTROL	PCI	0	0.00	0.0	2 0	0.0	0.0	0.0			YEAR-	PCT		0.0	0.0	0.0	0.0	0.0	0.0	55.5	22.2	0.0		0.0			
	1d					AC	NUMBER	c	n c	0 0	0 0	0	0	0			11111	NUMBER.		0	0	0	0	0	0	ın	2	0	2	0			
	INJURY	4				>	4										1 >	z															
		.0	Ť	•	*	A)E	UTM CI	- N N N		2 A.E		4 A.M.	5 A.M.	6 A.M.		8 A.M.	9 A.M.	10 A.M.		Z NOON	1 P.M.	2 P.M.	3 P.M.				7 P.M.			LO P.M.	11 P.M.	UNKNOWN
	FATAL					DAY	CODE	-00	2 5	1 0	1 20		- 10	0.5-	-90	-20	-80	-60	1	T	12- 1	13-	14-	15-	16-	17-	18-	19-	20-	21-	22- 1	23- 1	1
	•					JR OF	PCT	0		10			0 .	11.1	0.0	0.0	0.0	0.0	0.0	11.1	22.2	0.0	22.2	0.0	22.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TOTAL	6	WITHOUT	DEINIE	5	< CALL OF DAY	NUMBER	C		4 0	0 0	0 0	0 ,	٦,	0	0	0	0	0	П	2	0	2	0 (2	0	0	0	0	0	0	0	0

	C
	-
24	
m.	
MAR	
R	
Σ	
-	
Σ	
=	
-	
CO	
- 2	
	Г
ACC-	7000
\sim	-
0	C
-	
~	-
-	-
0	-
m	12
	-
m	
~	0
	~
XR330	12

RETRIEVAL	DENTS
E RECORD	ALL ACCI
SELECTIVI	017,866
TASAS	R017.169/
	076
	SD

PAGE

06-30-96/07-01-01

- - - ACCIDENT SUMMARY - - -

			,×		1.0
AY CONDITION	A-HOLES, RUTS B-LOOSE MATERIAL C-OBSTRUCTION ON ROAD D-CONSTRUCT-REPAIR-ZONE E-REDUCED ROAD WIDTH F-FLOODED G-OTHER H-NO UNUSUAL CONDITION <-NOT STATED	BCODE	A-DRY B-WET C-SNOWY, ICY D-SLIPPERYNOT STATEDINVALID CODES	ION OR RAMP ACCIDENT LOCATION>	1000000
-ROADWAY PCT	0.00 0.00 0.00 0.00 0.00 0.00 0.00	SURFACE	800H00	RSECT	10
NUMBER	000000180	NUMBER P	88 00 00 00 00 00	INTERSECTION	
NUMBER PCT COLLISION	0 0.0 A-HEAD-ON 1 11.1 B-SIDESWIPE 5 55.5 C-REAR END 2 22.2 D-BROADSIDE 0 0.0 E-HIT OBJECT 1 11.1 F-OVERTURN 0 0.0 G-AUTO-PEDESTRIAN 0 0.0 -NOTHER 0 0.0 -NOTHER 0 0.0 -INVALID CODES	PCF CODE N	11.1 B-DUSK/DAWN 11.1 C-DARK-STREET LIGHT 11.1 D-DARK-NO STREET LIGHT 0.0 E-DARK-NOT STREET LIGHT 0.0 F-DARK-NOT STATED 0.0 <-NOT STATED 0.0 -INVALID CODES	NUMBER PCT CODE	0 0.0 R
LISION FACTOR	1-INFLUENCE ALCOHOL 2-FOLLOW TOO CLOSE 3-FAILURE TO YIELD 4-IMPROPER TURN. 5-SPEEDING 6-OTHER VIOLATIONS 8-IMPROPER DRIVING C-OTHER THAN DRIVER D-UNKNOWN E-FELL ASLEEP <-NOT STATED -INVALID CODES	DE NUMBER	A-CLEAR B-CLOUDY C-RAINING D-SNOWING E-FOG F-OTHER G-WIND <-NOT STATED	-RIGHT OF MAY CONTROL>	A B O D A
RY COI PCT	0.00 0.00 0.00 4.4.4 4.4.4 0.00 0.00 0.	-WEATHER	55.5 0.0 0.0 0.0 0.0 0.0	IGHT O	77.77 0.0 0.0 22.22 0.0
<prima NUMBER</prima 	000044040000	NUMBER	W 4000000	NUMBER	.0000

AYI

S

06-30-96/07-01-01

- - - PARTY SUMMARY -

	>	PAF	<party th="" type<=""><th>-> <</th><th>MOVEM</th><th>ENT P</th><th><movement collision="" preceding=""> <-</movement></th><th>11111</th><th>1 1 1 1</th><th>-OTHER</th><th>135001</th><th>ASSOCIATED FACTOR</th></party>	-> <	MOVEM	ENT P	<movement collision="" preceding=""> <-</movement>	11111	1 1 1 1	-OTHER	135001	ASSOCIATED FACTOR
	NUMBER	R PCT	T CODE		NUMBER	PCT.	CODE	#	PCT	#	2 PC	PCT CODE
										=		
		9.99 9	6 A-PASNGR CAR/STA WAGON	MAGON	47	44.4	A-STOPPED	0	0		0 0	0 1-INFLUENCE ALCOHOL
		0.0 0	O B-PASNGR CAR W/TRALR	ALR	7	77.7	B-PROCEDED STRAIGHT	C			0	O D 2-FOLLOW TOO CLOSE
		0.0 0	C-MOTORCY		0	0.0	C-RAN OFF ROAD	0				A-FATLIBE TO
		4 44.4	4 D-PICKUP/PANEL TRUCK	JCK	1	111.1	D-MAKING RIGHT THRN					4 - TMDDODED TT
		1 11.1		TRALR	m	33.3	E-MAKING LEFT TURN	0	0		0.0	
		0.0		CTOR	0	0.0	F-MAKING U TURN	0	0		0 0	9
		0.0	G-TRK/TRACTOR	& 1 TRALR	0	0.0	G-BACKING	0	0.0		0.0	
		0.0	2-TRK/TRACTOR	TRALR	0	0.0	H-SLOWING, STOPPING	0	0.0	_	0 0	_
		0.0	3-TRK/TRACTOR	& 3 TRALR	0	0.0	1-PASS OTHER VEHICLE	0	0.0	-	0 0	
		0.0	4-SINGLE UNIT	KER	0	0.0	J-CHANGING LANES	0	0.0	_	0.0	D-0
		0.0	5-TRK/TRA & 1		0	0.0	K-PARKING	0	0.0		0.0) E-
		0.0		K TRLR	0	0.0		E	33.3		0.0	F-
N-	(3)	0.0			0	0.0	M-OTHER UNSAFE TURN	0	0.0		0 0	0
Po		0.0			0	0.0	N-CROSS INTO OPP LA	0	0.0	_	0 0	=
		1 11.1		37	0	0.0	O-PARKED	0	0.0		0 0	0
,		0.0		JUIP	0	0.0	P-MERGING	0	0.0		0 0	-D 0
		0.0			0	0.0	Q-TRVL, WRONG WAY	C	0.0		0 0	
		0.0			0	0.0	R-O'I'IER	0	0.0		0 0	
		0.0		VEH	0 .	0.0	<-NOT STATED	0	0.0		0 0	0
		0.0					33	6	100.0	1	0 0	0
2	5	0.0					PEDESTRIAN	0	0.0		0 (
		0.0		CLE	0	0.0		0	0.0		0.0	_
		0.0			0	0.0		0	0.0	2	0 0	.0 S-RUNAWAY VEHICLE
		0.0		,	0	0.0	4 - XING NOT XWALK	0	0.0		0 0	0
A					0	0.0		0	0.0		0 0	U-CHILDREN
-(5/6		V-DISMOUNT	SIAN	0	0.0		0	0.0		0 0	.0 V-ANIMALS* (INAT'TN)
{-			W-ANIMAL -	CK	0	0.0	7-	0	0.0		0 0	0.0 W-PERSONAL HYGIENE* (INATTN)
2	e 7	0.0	X-ANIMAL -		0	0.0	-INVALID CODES	0	0.0		0	0
_		0.0	2-ANIMAL - UINER					00	0.0	11	9 100.	0 0
	(J>	TRECTIC	DIREC'TION OF 'FRAUET	,		CDE	SPECIAL INECRMATION	0	0.0	20	0 0	. 0 DOES NOT APPLY
	NUMBER	R PCT		,	NUMBER	PCT	CODE	^	I *	*INATTENTION	ION CC	CODES EFF. 01-01-01
		3 33.3	3 N-N, NE, NW BOUND		0 0	0.0	A-HAZARDOUS MATERIALS					
					00	00	C-CELL PHONE					
					0	0.0	D-CELL PHONE	* 2		2/		2
		0			6	100.0						
		0.0	0 DOES NOT APPLY		0	0.0	DOES NOT APPLY					· ·
				88	0	0.0	-INVALID CODES	3				
								7				

*SPECIAL INFORMATION CODES EFF. 04-01-01

9

PAGE

06-30-96/07-01-01

RECORD RETRIEVAL	UMMARY
SELECTIVE 017,866	- PARTY S
TASAS R017.169/	110
920	
SD	

1		T.						II																					- 63											
- I I I I I I I I I I I I I I I I I I I	CODE	MEDIAN		C-LEFT SHOULDER AREA	E-INTERIOR LANES	F-RIGHT LANE	G-RIGHT SHOULDER AREA	H-BEYOND SHLDER DRIVERS RIGHT		J-OTHER	V-HOV LANE(S)	W-HOV LANE BUFFER AREA	<-NOT STATED	DOES NOT APPLY	-INVALID CODES				p	10	<	CODE		A-HAD NOT BEEN DRINKING			D-HBD IMPAIRMENT UNKNOWN	E-UNDER DRUG INFLUENCE	F-OTHER PHYSICAL IMPAIRMENT	G-IMPAIRMENT NOT KNOWN	M-NOT APPLICABLE	1-FATIGUE	<-NOT STATED	DOES NOT APPLY	-INVALID CODES					
-LOCATION OF COLLISION	OTHERS R PCT	0.0	11.1	0.0	0.0	0.0	0.0	11.1	0.0	11.1	0.0	0.0	0.0	100.0	0.0						DRUG/PHYSICAL	PCT		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0					
OF	OTE	0	Н 5	D C	0	0	Ó	1	0	1	0	0	0	5	0		- 2				DRUG/	BER		0	0	0	0	0	0 0	0	0 0	0 (ת	0	0					
ATIO	O NUMBER						Ç.	÷													1 1 1	NUMBER											i i							÷
-Loc	B															200					1 1																			
1 1 1 1 1 1	ARY PCT	0.0	11.1	0.0	0.0	9.99	0.0	0.0	0.0	33.3	0.0	0.0	0.0	11.1	0.0						ET'Y	PCT		100.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0						
1	PRIMARY SER P	0		00	0	0	0	a	0	3	a	0	0	-	0		34 17				SOBRIETY	BER		6	0	0	0 :	0	٥,	7 (0 0	0 0	0	0						
1	. PR NUMBER																				5	NUMBER																		
V							17)E	2	~									2										
					6-3		-					7.3			-																									
A		01-SIDE OF BRIDGE RAILING	02-END OF BRIDGE RAILING	-BOTTOM C	BRIDGE	6-END OF	7-BRIDGE A	-LIGHT OR	-UTILITY	2-POLE (TY	-TRAFFIC	14-OTHER SIGNS NOT TRAFFIC	5-GUARDRA	6-MEDIAN P	14-DIKE OR CORR	9-TRAFFIC	20-RAISED BARS	21-CONCRETE OBJ (HDWL, D.I.)	22-GUIDEPOST, CULVERT, PM	7 4	25-IN WATER	26-DRAINAGE DITCH	27-FENCE	28-TREES	PLANTS	O-SOUND W	0-NATURAL MATRL ON	1-TEMP E	42-OTHER OBJECT OR ROAD	3-OILIER	AF CONCU CHEUTON (CAND)		-CRASH C	-CALL BO)	98-UNKNOWN OBJECT STRUCK	99-NO OBJECT INVOLVED	VI THRU V9-VEHICLE 1 TO 9	-	-	-INVALID CODES
^	PCT .	0.0 01-SIDE OF BRIDGE RAILING	20 0	-BOTTOM C	O OS BRIDGE E	6-END OF	0 07-BRIDGE P	0 10-LIGHT OR	.0 11-UTILITY) 12-POLE (TY	1 13-TRAFFIC	0 14-OTHER SI	J 15-GUARDRA	J 16-MEDIAN P	1 1/-WALLIEAC	19-TRAFFIC	20	0.0 21-CONCRETE OBJ(HDWL, D.I.)	777	24	0 25	3 26-DRAINAGE	0	0 0	29-PLANTS	30-SOUND WA	0-NATURAL MATRL ON	41-TEMP BARKICADES,	42-OTHER	43-0111ER	A T CONEKIONS	TO TOWN OF TO	-CRASH C	-CALL BO)	-UNKNOWH	0.0 99-NO OBJECT INVOLVED	-VEHICLE 1 TO	0.0 <<-NOT STATE	0.0 DOES NOT	
TRUCK	THER	0.0 01-SIDE OF BRIDGE RAILING	20 0	0 04-BOTTOM C	O OS BRIDGE E	0 06-END OF C	0 07-BRIDGE P	0 10-LIGHT OR	.0 11-UTILITY	.0 12-POLE (TY	1 13-TRAFFIC	0 14-OTHER SI	J 15-GUARDRA	J 16-MEDIAN P	1 1/-WALLIEAC	19-TRAFFIC	20	21	0.0	0.0 24	0.0 25	0.0 26-DRAINAGE	0.0	0.0	0.0 29-PLANIS	0.0 30-SOUND W	40-NATURAL MATRL ON	41-TEMP BARKICADES,	42-OTHER	43-0111ER	AT TONER OF	TO TOWN OF TO	U 46-CRASH C	0 51-CALL BO)	-UNKNOWH	0 0.0 99-NO OBJECT INVOLVED	-VEHICLE 1 TO	0.0 <<-NOT STATE	.0 DOES NOT	
-OBJECT STRUCK	OTHERS NUMBER PCT	0 0.0 01-SIDE OF BRIDGE RAILING	20 0	0 04-BOTTOM C	O OS BRIDGE E	0 06-END OF C	0 07-BRIDGE P	0 10-LIGHT OR	.0 11-UTILITY	.0 12-POLE (TY	1 13-TRAFFIC	0 14-OTHER SI	J 15-GUARDRA	J 16-MEDIAN P	1 1/-WALLIEAC	19-TRAFFIC	20	21	0.0	24	0.0 25	0.0 26-DRAINAGE	0.0	0.0	0.0 29-PLANIS	0.0 30-SOUND W	40-NATURAL MATRL ON	41-TEMP BARKICADES,	42-OTHER	43-0111ER	AT TONER OF	TO TOWN OF TO	U 46-CRASH C	0 51-CALL BO)	-UNKNOWH	0 0.0 99-NO OBJECT INVOLVED	-VEHICLE 1 TO	0.0 <<-NOT STATE	00.00 DOES NOT	
OBJECT STRUCK	OTHER CT NUMBER	0.0 0.0 01-SIDE OF BRIDGE RAILING	20 0	0 0.0 04-BOLTOM C	0 0.0 05 BRIDGE	.0 0.0 06-END OF	.0 0.0 07-BRIDGE A	.0 0 0.0 10-LIGHT OR	.0 0 0.0 11-UTILITY	.0 0.0 12-POLE (TY	.0 11.1 13-TRAFFIC	.0 0.0 14-OTHER SI	.0 0.0 15-GUARDRA	.0 0 16-MEDIAN P	O O O 18-DIKE OR	.0 0 0.0 19-TRAFFIC	.0 0.0 20	0 0.0 21	77 0.0 0	0 0.0 24	.0 0 0.0 25	0.0 26-DRAINAGE	0.0 0.0	0 0.0 2	.0 0.0 29-PLANIS	.0 0.0 30-SOUND W.	40-NATURAL MATRL ON	.u u u u u u lemp bakkicanes,	O O 42-OINER	1 TILL 43-OILIER	O O O O O O O O O O O O O O O O O O O	O O A CRASH CL	.u u u u u u u u u u u u u u u u u u u	0 0.0 51-CALL BOX	-UNKNOWH	0.0 0.0 99-NO OBJE	1 11,1 VI THRU V9-VEHICLE 1 TO	0.0 <<-NOT STATE	00.00 DOES NOT	
OBJECT STRUCK	OTHER NUMBER	0 0.0 0 0.0 01-SIDE OF BRIDGE RAILING	0.0 0.0	.0 0.0 04-BOTTOM C	.0 0.0 05 BRIDGE	.0 0.0 06-END OF	.0 0.0 07-BRIDGE A	.0 0 0.0 10-LIGHT OR	.0 0 0.0 11-UTILITY	.0 0.0 12-POLE (TY	.0 11.1 13-TRAFFIC	.0 0.0 14-OTHER SI	.0 0.0 15-GUARDRA	.0 0 16-MEDIAN P	O O 1/-WALLICEXO	.0 0 0.0 19-TRAFFIC	.0 0.0 20	.0 0 0.0 21	77 0.0 0	0 0.0 24	.0 0 0.0 25	.0 0.0 26-DRAINAGE	0.0 0.0	.0 0 0.0 2	.0 0.0 29-PLANIS	.0 0.0 30-SOUND W.	.0 0.0 40-NATURAL, MATRLE ON	.u u u u u u lemp bakkicanes,	o. d 42-Olher	1 TILL 43-OILIER	O O O O O O O O O O O O O O O O O O O	S TO	.u u u u u u u u u u u u u u u u u u u	.0 0.0 51-CALL BOX	0 0.0 98-UNKNOWN	0.0 0.0 99-NO OBJE	8.8 11,1 VI THRU V9-VEHICLE 1 TO	0 0.0 <<-NOT STATE	1 9 100.0 DOES NOT	

California Department Transportation Accident Records

California Department of Transportation

OTW22131

Table B Accident Records

Policy controlling the use of Traffic Accident Surveillance and Analysis System (TASAS) - Transportation Systems Network (TSN) Reports 1.TASAS - TSN has officially replaced the TASAS - "Legacy" database.

2. Reports from TSN are to be used and interpreted by the California Department of Transportation (California or authorized repesentative.

3. Electronic varsions of these reports may be emailed between Calirans' employees only using the State computer system.

4.The contents of the reports shall be considered confidential and may be privileged pursuant to 23 U.S.C. Section 409, and are for the sole use of the intended recipient(s). Any unauthorized review, use, disclosure or distribution is prohibited. If you are not the intended recipient, please contact the sender by reply e-mail and destroy all copies of the original message. Do not print, copy or forward.

California Department of Transportation

OTM22131

Table B Accident Records

Report Perameters:

REPORT DATE: 05/08/2006

REFERENCE DATE: 05/08/2006

SUBMICHOR: TIILMELE

REFORT TITLE: 76

EVENT ID: 2161699

Total Accidents Retrieved

7.7

Records
Accident
Table B

2	200		~,	7 14	~		4 14	ny 14	A SH SH	1 ME 3	4 14	R	K A	PA I	K C	其	M 2	d A	料	of the	1 A	KK	AA	1 15 1	¢ v	A.	E .	KK	NT 1	AA	Á
20		M. W.	四样。	可知	m	ti p	i M	阳, 四	DA	to to	à pa	iq :	व व	pr 1	74 YM	m	cr c	מ כ	×	e z	h	ń n				3.5	747		-	4 17	- 1-1
K is	ra ri	n k t	N N N	v v	N.	4 5	VV	N. V.	NA	ri p	V	V N	* *	*			V I			V V		N. N.				Ne o	おうない	u si	N v	v v	v
200		1 1		1 1	*	1 1		1 :					1 1	:		111	1 4		1	1 1	1				0 1180			- 112 1 112	100 M	ដ រោ	
73.0					8				3 8	1 1		1	f 3	į,	E 1	10	F 1	1	J	: !	1	i i	11	1 1	i	7	; ;	į		1	1
0.9		1		1	!	1 1	-7	1 1	1 1	1 1	1	1	1 1	1 1	-	1 1	1 1	1	; ;	1 1	1	1 1	1 1	1 1	1	1	f t	1	4	1	ari
	-					, ,	1	2 1	1 1	* 1	1	1	1 1	1 1	ì	4	1 1	i	į :	1 1	Ť	1 1	1 1	1	1	3	1 1	1	1	1	441
HQ.		1 1	1 1 1	FEA	20	1 1	30	Var	1 1	1 1	1	1 5	4 4	1 1	ï	1	1 8		1	1 1	1	1 1	7 1	7. 1	,	575	hat i		rs .	rv.	n:
000												1 -	1 1 2	1 1	1	1	1 1	į		1 1	1	1 1	1 1	1	t	281	1 1		V3D	Y.L.V	24.13
O DI	a, 15	2 1 5 2 1 5 3 1 5	413	17	11114	V23	din.	Var	4日	V25	727	DIS.	4 1	V27	125	LE	VZG	72.8	ATA	100	13.57	ATA	200	472	N. T.	348	H A	N.	WZD WITH	1 1	200
S.H		000														ev.	n n	m.	بر. من است	- 10	- No.	4 P	,	A . S	. >	tal.	99 W		See Ale	. 4	H
PERSON							10.4	o- ₽	000	0.0	0	0. 6	9 0	0.0	0	0	0 0	0	O R	2 6	Ö.	0 0	6.6	D .0	0.0	O	0 0	0	20 20	0 2	07
D4: 24		200	00	00	3 . 6	000	00	9 6	000	000	00	0.0	0.	000	00	0	0.0	0	0 .	20	o.		000		0.0		0 0	10	0.0	0	a
12 H	Ė	i.p g	röä	· 10 · 1	3 7) [2	ti i	ı és	¥1. 6	*1 *1														0 0	O	C)	0.0	O.	000	g e	O
D 24 F			het e						44			L. L.	3 11	VV	W. T. C.		UV		v t	ı U	A i	D E	UA	D U	Ψ.	U.	to ti	U	¥ v	v	U
AHD		ाच ।	to in						0 A	r r.			171	न न		ri ,	4 4		rt r		.H		in m	4	1	Н	H. H	H	el r	14	r-1
pi e	71 250	根点			7 M	4 24	and to	4 4	of te	35 FE	14	of the	H	床 笠	M	H I	HH	35	m B	200	in t	对 44	Z M	14 35	Ÿ	3+1-	m te	14	料言	*	DJ.
			- N	e4 F	4 .	***	Hy M	4 14	73.FG	A A	100	4 0	D.	MU	Ü.	K I	n n	H	RI P	F	A.	द त	ste sta	K K	13	×.	K P	U	a n	N	D
MTR	02	0.5	03			10		M.		020	03	0.2		0.2	0.2	N:9		0.2	0.3	9	02	0.2	250	To			07		03		10
HOU	63	C	U		50	M		in-		řť.	四	U	9	U	U	L	1	·æ.			凶	P		M							
KKU	O	, #2°	P.		A	· K		int		rd,	A	À		nž	n	0		D	n		K	Ja.	n n				M M		P.		E
14 U	, Prof.	, td	缸		00	tri		舞	33	Ħ	h	24		111	14	b		pt.	44		Ħ	111 ·		A			D K		D		Д
w 07.	rq.	M	rt.		15%	Ħ		d	- 1	of.	ed!	K		ď	ris.	K							Ħ	过		-10000	# #		Ħ		H
ENVIR COND W L	O	×	À		n	W.		R.		200	a	K.		et e	-010		900 1000	AL .	×		KÇ.	K	A.	27,		e, i	4 44		r¢.		44,
N CO	A.	ph	et.			d		e.		100	d	K		n n	AT.	×		A	n		4	K	Ω	374	,		द द				a
AUK	+4	п	4-1			VG.		40							DJ.	K	1	O	A.	1	o,	173	AC.	14.		¢ ×	4 元	3	rit.		M
											Ln	i)		n	**	th		ri	H	•	ぜ	177	N	U	1	D D	यं भा	9	0		st ₄
COMMON ACCIDENT NUMBER	965013113	371000889	965015228		965015906	371001091		965016350	0440149	J	965013636	12	0	5	965012006	b		51	10	3	de D	to to	4	10	5	2 0	73 0	1	où.		LS CO
COMMON ACCIDE NUMBER	1	0	근		in.	0.7		19.	i.	3	Ĕ	96501472	565018101		20	965012464		968514551	96851455T	1	d A	10	24 L+	4	1	7 2	77	3	2 1		23
COM	in	170	30		20	To		23	t		9	20	5		503	503		25	10	į	50	0.1	10	to.	4	7 C	7	-	5		17
UNZ	57	'm'	ion		6	m		0	0	1	n n	th.	G		C)	10		196	10	1	40 ED C V D G 4	965016916	965014724	968512466	į	000000000000000000000000000000000000000	965011422	3	965UL5E68		965015235
8.8	to	iri	140		· O	0		O.	10	, ,	a	100			. ~				7623								1 300				DI.
TIMB	2035	1115	2255		0230	1,130		1509	2000		1772	1005	12.12	1	1725	0635	-	2330	0220	5	4	1.800	0530	7070	į.	1220	1130	1	7447		
		.,	1.4			CT.		بر	-	,	-1	*1	-	1 1	rd	O		N	O	1	i	H	Ö.	0	1	1 5	1 2	ž	4		
E 2	e)	m	-429-		in	List		a-M	16			124	200		N.				00000												
ACCIDENT DATE MM-DD-YY	9-27-03	6-21-03	03-13-04		17-18-05	9		12-01-04	05-61-05		7714	06-08-05	-21-03		U6-02-05	-21-05		701001	-06-03	NE NY NY	4	なり	0.4	-22-03	. 5	5. 6	1.15	8	2		50
ACCTE DATE MM-DE	17	CX.	7		F.C.	m.		6	0	*	4	08	P.	4	O.	21		D.	190	3.	4	06-18-04	09-10-04	.54.	20,00	**************************************	50-50	5	44.03		12-05
るなる	0	6	2		0.7	in C		CY.	100	*	300	18	11	3	0	07.	,	0	7-	1/	1	36	5	9	-	1 1	1				
白龙衫	~	7	1			U.		₩.									2.0		0.7			O	0	90	C	9 6	08-	-	ને		03
日の日	64	THE	14			F41:		EI .	. ∺			et.	ri		rs.	141	¢		4-5	i		AD.	\$p	rt	14	· *	10.	1	-	1	
нин	,	1	1			nui.			NO.	ţ.		· 因·	×			摇	13		-32	Į.		m.	*	K	ž.	1 tx	E	p	Œ.	I	স
B1 E1	ţn	TI.	щ		H I	H		Li.	ni ni	þ		H	H		1	3	1		3	ur		LA	ńί	3.	1			J			t
'pr (0)		2000	1000						***	200		144	j.E.	, a	4	岀	-		Ħ	H		1-1	*	Ħ	ri	h	22	Þ	\$		-
	80	9.0	00	. 3	017. 330	20		5	0	Ċ		0	Ö	5	•	ø	c		0	Kd	600	100	w.	6	-			-			~
POST	017,380	017.390	017.390	4	7	वी.	2	077-430	017.420	017.430		017.480	017.500	DA 7 500	y S	017,820	027.840		017.840	928.410	ľ	017.886	017.866	017.880	018.020	018.070	018.200	DER SEN	Y 4	240 240	4
MI	117	17	17	+	1 :	-1	. 1	7	7	1		1	17	1	1	17			1.	4		1-	1	1	00	60	63	100	>	0	
n n					. r	>						O	O			O	C	i.	P	8		0	0	6	0	6	2	10	*	ć	7
	K	25	or.		ri r	4	\$	毕	莊	P.		D.S	p	p																	
	11 SD 076	076	0.76	17.	0 0	2	27.0	9	940	.940		LOT	W			Lai	No.		to	tó	g :	9	10	Lps	LP	· in	ì.o	414		93	
	Ö	C										0	076	076		02	076		910	076		910	970	940	075	076	970	37.0		075	
ARS	57	11. SD	11.30	, C		1	0,0	3	8	OS		SD 076	CES	25		SD.076	11 30		8	SD		S.	SD	Q5	SE	0	DS.	Sin		63	3
R	11	11	17	*	1 -	đ Ł		4	H	H		7	17	H		11	11		11	11		#				w.t	.01				
			0.0		1 73	E)	- 6	20	C.	-		1		. H	E - 8	rf	2		1-1	H		+1	#	11	11	H	H	g	ŧ	r	Ť.
1,127																															
BÖDEST- E LINE	Н.	7-1	H	t	1 1	ł		4	Н	H		4	н	5-1	- 5	rd	+4		н	p-f		Н	+-i	rí	p-1	+1	r5	r	i i	,	4
E E	-1	e-f	ম্প	524		r.	1750		Secr	(ett)		- 27	ES.										12	resti		100					-
E E		4.1	401		f and	8		1	H	14	7	4	r-f	H	0	H	4		7	1-)		H	\leftarrow	1-1	e-1	rit	2-1	-	-	*	4

																															Ĉ													
0 1 0 0 M SD 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		m v	ot :	z s	9 10	i i	D . ₩ . D	v	- 6.A	M v N	×	a i	V. 1	N N N	Į.	įχį	M	N< C A	4 c M Be	*** 5'¢ R B<	Ne W Ac	NA B	TO De C Ac	'N × N A	囟	m;		11c M Ac	OX s	N T	v v	Ŋ	ù		N N H	N < B	N V	n	NA NA NA	q p	K K VN	A R B	NA	
1.00 1.00 1.00 1.00	3		24H 44H	1 1				43H	7			† †			узр дзя			マーニー 送をす	44年	440	1.41	1 1 1	44日	1111	£	1 1 1 1 1 1		24H 44H	1 1 .		*****	1 1		44H 24H	1	1		1	ė. 1 1 1	1	1	1	1	1
D d b ta d d	A. Marine		138		TIME.		4.00	34.H.	VZD.		T. Mark		1,64		VZD	477	1	24E	238	234	VZD	VITA	日本代	V2D		VZE	VID	13H	VZD	WOW.	VIF	100	ME	TOR		VIE	420		414	4	414	23用	VZE	VIF
S PERBON I K I	\$	2 1	5. 50	4 6	i. c			5. 6	0.0	j. 1	3. 8	2 6		000	00		g. :	00	00	0.0	00	8	00	00 00	00	00	00		00 00 0	2 0			000	o o	00	00 00	2 6	3	00 00 0	0.0	00	\$0 00 ×	00	D 00 01
2 H H A B	75	i k	100			i ia	g. <u>F</u>	a i	A I	4 c		1 3		H ₩	C. C.	× :	* 1	en e En e	D#	i z		¥.		36	1179-170-7		ž.	ÞJ .	说 F 说 B	r p	i to	×	ig I	H:	H I	r-1. r	d +	4 1	e m	i in	7	RHI	田田田	A W 1
R W O MTR	C	in	d: 6	1	P	20	1. E	4 6	4		D A G2		D B 02		D B 03		.p	3 %	4. 1	M 1		1	TO A		4	D B 02	3	10 E 01	K D	0 0 0 0 0		D B 02	3	and a	D A 02	× 1		5	ZD 8	A B 02		M	D A 02	
COND 1	K	, id			BA	A B A H	N.	i n	4		H H U H		田田のこ		A D. A H		ķ	¢ ×	4 ×		i.	*	A A	ARAB		******	, K	4 7	# # #	BAAH		A D A H	6	# 1 # 1 # 1 # 1	T P	N N N	¢	, K	\$ \$.	AAAH		DA	A. D. A. H	
N PE	95		1891			2		1 0320			9 559		531 5		730 7	e.			1			7.04		070	. u			# (n		165 2		130		3 1		u	,	ú	2	10		щ	9	
COMMON WE ACCIDENT	5 965016485		* 500		12.00	5 965015750					2 965016655		5 968015831		5 968512190		5 965014724					a perestance		מדכטיופטל ז	1. 9450144		acentesac	2 6		0 968513165		5 968512190	יש'פב'עון פשבע			5 948510603		0.000000000		965011422			965015600	
ENT. TITKE	-05 1345					-04 0205	-03 0230				04 0022		02 0032		737.0		05 0925					11 TO			1447		0200 50			03 1330		2225	0000			1385		5000		0491 3640			15 2322	
A DATE Y MM-DD-YY	2 05-30-05	5 11-20-03	1 12-14-03		T. 04-11-04		3- 03-111-03	2 06-28-04			1 10-17-04		6 06-03-05	30	ed regrees		3 08-30-05					3 01-25-08	1 00 40 TO		3 04-05-05		3 17-18-03	00 00 00 00 00		5 02-13-03		4 06-25-03	4 05-11-0x			4 03-05-03		A 27-18-62		\$0-0T-0T Z		7 05-24-03	7 03-05-05	
20 M 20 M 20 M 20 M) H		1 21		1	r H		11 11		10.	H		H - E	,6 13			五 一 五	五 - 五	it.	-1		五 五			H		H I	1		H I	3	34	B. 1	1 02		H.		3		H - N		B	i E	
P. POST	018,270	018,340	018.340		018.340	018.340	018,370	018,540			018.540		018.540	010 CTN	1. 1. 1.		018.700	01B,770	018.800	018.870		018,890	019.010		019.010		019.030	019.090		030.610		013 1610	019.090	חמט מינים		019,100		010 1.00		061,610		019.200	019.220	
10	SD	SD	11 SD 076		9	20	SD	11 SD 076			11 SD 026	1	17 SD 076	11 80 076			SD	11 SD D76	11 SD 076	11 SD 075		11 SD 076	SD		11. SD 076		11 SD 076	11 50 076		11 SD 076	4	970 75	970 GS 11	E.	1	11 80 076		.11 SD 076		11 80 076		SD	11 BD 076	3 1
REGUEST- S LINE			H				년 ·				1		1	1				1, A	ri *H				1 1		1 1		÷.	4		et F1		- 1 -1	eri eri			1				r r		rt +1		

	1	CT.	D,	N									1607							19																	
				2		*	ξ	N	N	. 10	ς .	V RT	V.	K	M.	A.	X	Ac	K	NA	A.K.	- ×	X.X	A.	AA	,V	Ņ Ņ	AA	Y.	N. A.	K	V.	BX	12	Y	V	ý K
				Ä		¢			U				Ø.			rij.				rt.	H		m	Ü	U	U	Ø	嵙	*	Ü	×	M.	M	×	U	pr.	O
			ţi,			5	2	¥	N	· K		X Z	¥	N	T.	N	×	×	MA	NA	Ý.	8	N	V Eu	NA	W.	.¥	MX	NA	NA	N.	¥	٧.	V	×	¥	×N.
			Ö.	0		1		1	1	ļ		1	1	1	Į.	1	1	1	1	1 1	-	. !	1	1	1 1	1	1	1	1	1	1 1	1.	, F 4.	1	1	!	1
			o.			,								70 E					e e e e e e e e e e e e e e e e e e e	000				1				i	1	ì	t	ì	Ť	ţ	i.	i	1
	4	a,	KO.	O		1		4	+	į		1	1	438	1	1	1	1	26%	1	1	24B	1	1	1	+	1	1	1	1	1 7	1	1	4 1	1 4	İ	1
			o si			1117	1	200	44H	AAE				ASA	STE	VIE	11	13.14	VZF	138	1.	44B	+++	-	44日	ZSH	1	1.	4.	1	1 3	4.65	283	1	1	998	1.
	+	7	ø	r,i			44044		23H		444		44E			ME						*		277	53					0.000	27			ere Ga		eser.	talls:
			O) -	C.						- 3								3.00				LVZD						*		VIE			27B			1.	
	Charl.	S D C C C C C C C C C C C C C C C C C C	ď					\$						00		00						0						00							00	O.	00
						00																										00	112		00	00	0.0
		4.1	H 1	н					e rt											Ω												ø.				v	ņ
			-1.4			*					. M.			M I						EN .						日日	74				erd.	rd . 32 '			rd:	4	H
	Ď	e E	4			th	Ļ	1 1												di.							K								iz U	v .	D.
	NO.	Kimin	1	VE A			101		70	(4)							. 50					0.2		0.1		100	0.2		2.0		20		TO				10
) (ia	TE.	·ř	и.	EQ.	B	B	. Y	J.			O					D.		Dig :		M			 g		n.			ė.			io io
	PH		3.5						1	Ä	Ó	F	1	2		1				•	2	D		Ω.		a'	a.		7		7			à			Pi.
		p					H		0					ď.		-	r;			1	4	ri.		4.				4	d.		ri		d : }	T,	Ħ	3	29
	TR	E	U				戏战			4							\$			- 5		A.		ď.	1.0				ť	9	ď,	#	¢ .	¢	A	ŕ	3
	RIVIER	CON	W T				戏									¥	¢				* :	*		4 1		A D			Ç		4			2			₹.
	۵					n	খ্য	4					tr			u	700			t		edi.		n b				K		,×	4	*		#			e y
			î					225	- 2				3			115						10		100	150 1		27							*	**		£:
	i.	NT		en.	OFF AT FAR	7.7	958509664	185	144	1	471	510	324	Í		200	1			1.67	1	545	40.	9-1	0. 1	500	200	.9.4	£.	Ü	9	Ü	2 6	1	ri.	, t	4
	COMMON	ACCIDENT	MINNBER		17.17	1	203	513	0 42		07.6	016	11.1			11	į.			37.73	1	7	244	1 4	0 1	7	9 .	*	1		4.0		4 4	1	113	N. F	5
	CO	ACC	MILI		220	3	85B	968513165	ococt syen	0.1	365026471	965016516	965014724			arte for moon				PASON BRAN	1	968512523	OCEAN CHON	100000000000000000000000000000000000000	0.00	DOM TONAN	DEDSTORGE	SECT ATOR	1	0.5000000000000000000000000000000000000	000	DECOTA BOC	1 0	Tonatoon	683	2.432.404.00	2
		19	2	5	H	1	ir)		0.00		•	N										500				4.00.00					OF III						
		TI	THEMM		DRAK		1325	1455	2200	A	0045	1432	1250			1.4.2.0	í.			1457		1330	A A E	1635	400	2444	7	おから		1125	776	2000	1000	200	1023	1120	
			54			2112	4			3 2			141														0					*			-		
	ACCIDENT		MW-DD-YY		10-09-01		**************************************	03-22-03	07-08-03	1 3	CHATTE	09-20-05	10-13-03	×		07-19-04				07-24-04	NE 25 22	3	07-24-64	06-24-04	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3. 6	¥-	-04		00	,	n.C.		9 4	50	5. 11-28-04.	3
STATE SALES	CCI	DATE.	W-D		0-0		4-10	3-17	7-03		4	3-20	27-13			1-15				-24		571	-24	-24		20 00 00	2	105-03-04		03-05-03	,	04-17-05	20-18-02	1	50-50-50	10	1
	0				15				3																			0.5								1	
			H		が				,e1				四日			N X	8			W 7			W 7.				4	14		r.		*	- 63			in	
1	H 1	4	H		ı			1	1	1	 ()	1	t			1				-	10		10		íc	- 8		3	N N	N.	200	, Sta	1	1.2		100	
	3	St.	E4.		H	h	4	H .	量	. A	1 1	r;	74			þ				Ħ	F		Н			1 1	:	Ħ		H	b		#			fot	
			8		0.5	7.07.		D.	0	0,		3.	.0			Q				6	05	1	m	. 0	in		r.	ō		ò		Ö	0	K	,	Ó	ç
į		POST	173		019.360	070 270		018.370	m	019.970	1 1 1 1 1	9	019,380		(*	019.380				019.380	019 393		019.393	019.410	5.1	53		10		.60		82	8	0.5	7.	66	
					r O	110		5	019.370	013		5	010			01.9				013	01.9		0.19	01.9	019.515	019 520	Ė	019,530		019.600		019.820	019.840	ATG. 65A	1	019.990	
	ŧ	P)	ц																									13000						-2100		M000	
				400	970	940	44.	0	0.76	0.76	ANY	0	970			176				970	75		920	910	076	076	10	076		976		920	910	ACA		940	ě
		39	n		20	CIS	-	מות	SD	Sm. C	100		SD			7 0				SD 0	SD 075		S.D.					Sn o		0						0	ā ē
			STATES		11 5	11 5			17 8	11.5		1 :				11 SD 076				11 8				11 8						t sa		T SD				1 39	
				1	7	-	٦	7-	ri.	-	-	. 1	d.			rd				Н,	H		m.	H	T	-		17		H		H	11	۳	ŧ	T	
	2	100		į	н	7	٠	4	н	-1	-	1,	-1			H				ч	y~1		H	М	.rt	mi		н		-4		-1	-		ł	فنو	
	TEST	C TUNITE	1		+	73		4	н	2	50		н.								663 C#		601 . G		000 34	1888		25) .s		ozie.		***	- 10 P			-67	
	275				-	1	100					- 1	100			1.7				8.7	175		777	T*5	and.	_		pro-S		Total		~	-	- 1964	6	-	

OTM22130

Table B - Selective Accident Rate Calculation

Polloy controlling the use of Traffig Accident Survelllance and Analysis System (TASAS) - Transportation Systems Network (TBM) Reports

- 1. TASAS TSN has officially replaced the TASAS "Legacy" database.
- 2. Reports from TSN are to be used and Interpreted by the California Department of Transportation (Californis) officials or authorized representative.
 - 3. Electronic verslons of these reports may be emailed between Caltrans' employees only using the State computer system.
- The contents of these reports shall be considered confidential and may be phylleged pursuant to 23 U.S.C. Section 409, and are for the sole
 use of the intended recipient(s). Any unauthorized review, use, disclosure or distribution is prohibited. If you are not the intended recipient. please contact the sender by reply e-mall and destroy all copies of the original message. Do not print, copy or forward.

Table B - Selective Accident Rate (

Report Parameters-

Event ID: 2161699

Request Name: 76 Ref Date: 05/08/2006

Request.	40	_ m		λ		Rafe	100	o ve	ride Ra	5693	Override					
& Cine	Ü	20	Route/Location	Begin Date	End Date	Type	Sed	Rate	mj%	Kat%	Maln.	Cross	Req.	Com.	Exc! Ramp?	
-	X	⊢	11 SD 076 R017:300 thru 11 SD 076 020:000	31-DEC-02	31-050-05	z	,		5				Ż	ż	\$	
Event Loc	-						18									

Job Id.is.: 212948 Accidents Table. B Request 76 Submitted by 1711LAIELE

1TM22130 5/08/2006 8:57. AM

101	1,33
4	28.
Fatter	0.029
Acciden	183
Actual	7.02
F	0.025
Total MV4 or MVM	39.29
A Marie A	13,3
20 20 20 20 20 20 20 20 20 20 20 20 20 2	W. 88
Chark	131 H97
Met L	ri5
fa / Sign Multi Veh	40
cciden F+I	40 H88
7. of A. Inj.	18 03 18 03
Fat	***
Tat	H87
Rate Greup (RUS)	2700 MIH 03
	36 000.
Location Description	1.50:076 R017.30011 ST 076:019:999 001-0001 2002-12-31 2005-12-31

Accident Rafes, expressed as: # of accidents / Million vehicle miles

- denotes that Million Vehicles (MV) used in accident rates instead (for intersections and ramps).

or Ramps RUS only considers R(Rural) U(Urban)

AS2

R RR									
XST									
MAIN									
0 F									
AUE									
& F		0.	CL.	0	2	a.	۵.	0_	٥
SEQ 1									
00	H	H	H	ы.	3 14	i-d	int	H	-
	866	998	998	866	.866	998	.866	866	866
TION	017	017	017	017	0.17	017	017	017	017,866 I
DCA.	OS.	-SD	CS-	-SD	-SD	GS-	GS-	-SD	GS-
- -	169	1.69-	169-	169-	169-	1.69-	-691	-691	R017,169-SD
O E	7.	17,	17.	17	17.	17.	17.	17.	17.
R R									RO
	8	SD	SI	CS	SD	SID	SD	SD	SD
	1/98	1791	792	1/93	194	1795	96/1	197	1/01/98-12/31/98 SD
RIDI	2/33	2/33	3/3	2/33	2/33	2/3	2/3	2/31	2/33
의	1	1-1	CA T	3-1	4-1	ng L	6-1	7-1	8-1
TIME	179	11/9	11/9	11/9	11/9	11/9	11/9	11/9	11/9
μ. Έ	01/(01/0	01.70	01/0	017	01/(017	0170	01/(
Вн	-	-	-	-	<u> </u>	H	-	H	μ
375	920	920	926	920	976	920	920	920	920
$\neg\vdash$	$\boldsymbol{\mathcal{I}}$	\mathcal{I}	I	工	\equiv	工	∞	工	I
a m				ú		C	Ü		U
RED	0001	0000	0003	0004	0000	9000	0000	8000	11 0009 C H 076
II	1.1	11	===	1.1	1.1	11	1.1	1.1	1.1
	*	*	*	*	*	*	÷	*	*
(a)	*	4	*	*	*	*	÷C	*	- <
SAG							3	-	
Σ.	*	*	-Ķ	*	*	*	*	*	*
	REG AL RTE D TIME PERIOD SELECT LOCATION S SEG R A NO S T I FROM TO BEGIN END C 123 T P	DT REG A L RTE D TIME PERIOD SELECT LOCATION S SEG R A AVE PC PC ADT NO S T I FROM TO BEGIN END C 123 T P RATE IN FA MAIN * 11 0001 C H 076 T 01/01/91-12/31/98 SD R017,169-SD 017,866 I	DT REG A L RTE D TIME PERIOD SELECT LOCATION S SEG R A AVE PC PC ADT NO S T I FROM TO BEGIN END C 123 T P RATE IN FA MAIN * 11 0001 C H 076 T 01/01/91-12/31/91 SD R017,169-SD 017,866 I P * 11 0002 C H 076 T 01/01/91-12/31/91 SD R017,169-SD 017,866 I P	DT REG A L RTE D TIME PERIOD SELECT LOCATION S SEG R A AVE PC PC ADT AND ST T I FROM TO ST TO 1/01/91-12/31/98 SD RO17,169-SD 017,866 I P PC ADT ADT A TO 01/01/91-12/31/91 SD R017,169-SD 017,866 I P PC PC ADT A TO 01/01/92-12/31/92 SD R017,169-SD 017,866 I P P PC ADT A TO 01/01/92-12/31/92 SD R017,169-SD 017,866 I P P PC ADT A TO 01/01/92-12/31/92 SD R017,169-SD 017,866 I P P PC ADT A TO 01/01/92-12/31/92 SD R017,169-SD 017,866 I P P PC ADT A TO 01/01/92-12/31/92 SD R017,169-SD 017,866 I P P PC ADT A TO 01/01/92-12/31/92 SD R017,169-SD 017,866 I P P PC ADT A TO 01/01/92-12/31/92 SD R017,169-SD 017,866 I P P PC ADT A TO 01/01/92-12/31/92 SD R017,169-SD 017,866 I P P PC ADT A TO 01/01/92-12/31/92 SD R017,169-SD 017,866 I P P PC ADT A TO 01/01/92-12/31/92 SD R017,169-SD 017,866 I P P PC ADT A TO 01/01/92-12/31/92 SD R017,169-SD 017,866 I P P PC ADT A TO 01/01/92-12/31/92 SD R017,169-SD 017,866 I P P PC PC ADT A TO 01/01/92-12/31/92 SD R017,169-SD 017,866 I P P PC	DT REG A L RTE D TIME PERIOD SELECT LOCATION S SEG R A AVE PC PC AUT * 11 0001 C H 076 T 01/01/91-12/31/98 SD R017,169-SD 017,866 I * 11 0002 C H 076 T 01/01/92-12/31/92 SD R017,169-SD 017,866 I * 11 0004 C H 076 T 01/01/93-12/31/93 SD R017,169-SD 017,866 I * 11 0004 C H 076 T 01/01/93-12/31/93 SD R017,169-SD 017,866 I P P PC PC ADT * 11 0005 C H 076 T 01/01/91-12/31/93 SD R017,169-SD 017,866 I P P P P RATE IN FA MAIN	DT REQ A L RTE D TIME PERIOD SELECT LOCATION S SEG R A AVE PC PC ADIT NO S T 1 00001 C H 076 T 01/01/91-12/31/98 SD R017,169-SD 017,866 I * 11 00002 C H 076 T 01/01/92-12/31/91 SD R017,169-SD 017,866 I P P P P P P P P P P P P P P P P P P	## 11 0005 C H 076 T 01/01/91-12/31/92 SD R017,169-SD 017,866 I	DT REG A L RTE D TIME PERIOD SELECT LOCATION S SEQ R A AVE PC AUT * 11 0001 C H 076 T 01/01/91-12/31/98 SD R017.169-SD 017.866 I * 11 0002 C H 076 T 01/01/92-12/31/92 SD R017.169-SD 017.866 I * 11 0004 C H 076 T 01/01/92-12/31/94 SD R017.169-SD 017.866 I * 11 0005 C H 076 T 01/01/94-12/31/94 SD R017.169-SD 017.866 I * 11 0005 C H 076 T 01/01/95-12/31/95 SD T 01/01/95-12/95 SD T 01/01/95-12/95 SD T 01/01/95-12/95 SD T 01/01/95-12/95 SD T	* 11 0002 C H 076 T 01/01/91-12/31/94 SD R017,169-SD 017,866 I P P P P P P P P P P P P P P P P P P

0	6	6	0	0	0	0	٥	0
TOTAL REQUESTS READ:	TOTAL CARDS READ:	PROCESSED:	NOT PROCESSED/ERRORS:	MOT PROCESSED/TIME:	TOTAL REPORT/SPECIAL OUTPUT:	SPECIAL PRINT REQUESTS:	NOT PROCESSED/TIME:	REPORT LINES:

*** END AXR251 ***

TASAS TABLE B DISTRICT 11 SELECTIVE ACCIDENT RATE CALCULATION ROUTE SEQUENCE

-A 04-19-99

MUM*	101	1.45	1,46	1.46	1,46	1.46	1.46	1,46	1.46	1.46
V+ OR M AVERAGE	I+1	.77	.77	,76	.77	.77	.77	.77	.77	.77
CS/MV	FAT	.029	.029	.029	.029	.029	.039	.029	.029	,029
ATE AE	TOT	4.63	.57	3.38	6.78	7,35	6.25	3,34	6.43	64 64
ENT RA ACTUAL	ド 十 上	2.49	.57	20.02	3,96	3.96	2.27	2,78	2.92	50.00
ACCID	FAT	000	000'	000	000.	000.	000.	000.	000	.000
TOTAL *ACCIDENT RATE ACCS/NO+ OR MUM-* NO+ OR ACTUAL	MUM	14.05	1.77	1.77	1,77	1,77	1,76	1.80	1,71	1.71
*ADT *	X-ST	6.9	7.0	7.0	7.0	7.0	6.9	7.0	6.7	6.7
PER ⊁ KLD	INJ	83	00	20	0 10	17	04	0 %	110	0 9
NCE*	DARK	20 H99	0	N	3 H90	9 9 9	Ci	4 4	C4	+1
IFICA	WET	Ø	0	and .	0	, l i	0	0	0	0
S/SIGN MULTI	VEH	R)	•==	S	Ø	11	~	9	10	1973
ACCIDENTS/SIGNIFICANCE*	H+H	35 H99	~	H97	N99	7 H99	4 H92	5 H97	5 H97	**1
	LMI	35 H99	r-l	5 H97	7 H99	7 H99	4 H95	5 H97	5 H97	#1
ER OF	FAT	0	0	0	٥	0	0	0	0	0
RA *-NUMBER GRP	TOT	655 H99	+4	6 H92	12 H99	13 H99	11. H99	6 H92	11 H99	N
RA #	(RUS)	H 96 MB (R)	E (H	H (R)	H S	H (H)	H (R)	H (R)	H (R)	E (8)
		E C	OH OH	£	2	S C	MO	S S	MO	12 MO
z			2	2	2	4.2 C.5	12	63	2	54
IPTIO		017,865 98-12-31	017.865 91-12-31	017.865 92-12-31	017,865 93-12-31	017,845 94-12-31	017.865 95-12-31	017,865 96-12-31	017,865 97-12-31	017,865 98-12-31
02		10	0.1	0.1	20	0.7	10	17	10	7
DESCR		THRU SD 91-01-01	THRU SD 91-01-01	7HRU SD 92-01-01	THRU SD 93-01-01	THRU SD 94-01-01	THRU SD 95-01-01	THRU SD 96-01-01	THRU SD 97-01-01	THRU SD 98-01-01
9		-	-	4		-	-	-	-	
N 0		17.169 0.697M	17.169 0.697M	17.169 0.697M	17,169 0.697M	17.169 0.697M	17,169 0,697M	17.169 0.697M	17.169 0,697M	R 17.169 0.697M
H		HO	H O	R 0	× 0	40	× 0	20	40	40
F										AP
Q.		日十	PN	A W	D &	田宮	A a	BV	PO	74 5

TASAS TABLE B DISTRICT 11 SELECTIVE ACCIDENT RATE CALCULATION END OF JOB

-D 04-19-99

RECORDS WERE READ FROM TABB DURING THIS EXECUTION	OUTPUT	that did a data that the common the time the district and the common the comm	O SUMMARY RECORDS	O RECYCLED RECORDS	9 RECORDS PRINTED	that a third has been sideral about the state over their paint they had been right their has they had been been	O TUTAL
WERE READ F		and they have been been been training	REQUESTS	REQUESTS	ECORDS	the case has not been been been been been been been bee	~
RECORDS	INPUT	en i dan yang dan disab basi yang yang yang anan anan yang yang yang	SUMMARY	RECYCLE	REPORT RECORDS	THE COLUMN TWO COLUMN TWO COLUMNS THE COLUMN	TOTAL
٥			0	0	6		0

	44	SIG		čč	A A	~ ~ ~	C C		Z Z	A 4	C 0	C C		4	(T)	w X	<	< <						ě č	C 0	I		Y 4		C	× <	Iω		C C
		ΣO	>	шα	A B	四日	шд	pap	иμ	ше	四日	ши												n to									шя	田田
	PAGE	DA IT	5	ĭž	ĭž	žž	žž	ĭ ĭ z	Ϋ́	žž	L Z	žž	ĭž	žĭ		~ ~	¥	ž i	íž	ži	1	ΰŽ	Ľ.	Ž	Ľž	F	ž	žž	Ĭ,	ΞΞ	žì	ĹŽ	Ľž	žž
	ā.	0 C 0 C		i 1 i 1		1 1	1 1		1 1			1 !			!		1		1	i	1		1			1					1		1 1	1 1
		0 C 2 O		1 1		1 1	1 1			1 1			i !	!!!	1	 	1	29H	1	i			1		1		i					1 1		1 1
		0 5		1 1	1 1		1 1		1 1		1 1		LEA	V2D	1	U3D	V2J	NOT I		1	* * * *	44H	17H		1 1	-	1	18H		1	1 1	l ! l !		
	04-19-99	0 0 0		UZD	U2F U1F	V2D V1D	VZD	C2F	V2F V1F	UZD	USF	C 22 F	V2F V1F	11.60	V.1F	UZB U1F	1 1	24H	CIF	UZF	OIF	41H	13H	CIF	U2F C1F	C2B	VIF	VZA	E25	C S F	VIF	V45 V1F	VZI	U2F U1F
	4-1	NSX.		00	000	000	500	100	100	100	000	010	000	000	030	00		010	000	0.1	00	100	03	38	000			000	000			000		
	0	PER		000	00	000	800	000	000	000	000	000	000	00	000	00	00	00	000	00	000						00	Same and	000				000	00
		0 H	ne j			~~~				~ ~	~ ~	1 1	1 1	1 1	-	V V	-	V \	· ·	-	1	11	25.00	N H	11			~ ~	8 -	60 - 35 L.	-		8 -	3 (
		D I		Z W		77 22				ш	i ii	- 12	1000		13	z 3	لنا	24				ى . لنا لد									ша			26
		D- -		K A				E PL <				9 8	Œ A	(C <	I A	C C	9	C <	19	Ø.	€ .	Œυ	C	C N	< <	I <i< td=""><td>L.</td><td>< <</td><td>∢ .</td><td>I «I</td><td>Œ «</td><td>I</td><td>C (</td><td>(4</td></i<>	L.	< <	∢ .	I «I	Œ «	I	C ((4
		œ	工	22					01	0"	67	01	~			~		-4 7	17	03		and and		n)	Di.	CS		C1	CI	63		N.	CI.	CS
		NOM	VEH	0.23	02	0.2	02	03	0.2	03	0	C	03	C	>	03		10		03		0.0			0.3	0		0	0	0 0		E 02	D 02	р 02
		10		A	D C	C	A	A	A	D A	C	A	ΑD	۲ د		O O		A S		D C		H H			O	A B		A A	V	A		Œ	A.	A
		22	O.	H	I	Œ	I	I	I	Ξ	I	I	I	2		五		I:		I		ΞΞ			2	Ξ		I	I	\equiv		I	I	I
			CC CC	<	<□	20	Œ	AC.	\ll	Œ	⋖	<	<⊏	<	Σ	∢		< <	I	Œ		C C	Œ	Œ	⋖	Œ		\C	Ø	Œ		23	<⊏	Æ
		ENUIR	J	€	$\langle \mathbb{I}$	Œ	M	Œ	C	∢	∢	∢	Œ			Œ		0 <		A		98			A	B		ω Œ	A	B		m m	A	A
				99	P	P	PA CC	∀	€	8	< □	€	4 A	5		1		O C		(C)		4 4 E E E			E CI	m		es es	5 6	E.)		m	3	3
		40		3	0/ PJ	8 6	9	9	4	N	4	(7)	(2)	c	Ą	m		W) (-	9		00	4	C.S.	4	00		99	(7)	(O)	-	00 12)	66	33
	(1)	COMMON	H.R.	03	55	8	979	666	996	407	366	643	952	000	N .	361		761	17	6260		980	96	0)	9960	55		113	643	117	- 1	0.1	10	188
	RECORDS	DE LI	NUMBE	510	509	511	9820	8506	8509	504	208	50	509	T.	7	68208		507	0	W		0 0	25	100	67	350		6851	90589	68209	1	8208	8509	3511
				896	8882	9685	0-	96	96	896	896	896 (896 (070	^	896 0		896 6	40	5 968	- 3	968	0	0	896 0	3 968		396 5	396 0	0	1	2 96	5 968	0 968
	ACCIDENT	DENT	HHMM	1035	1030	0735	1918	0825	1749	0830	1610	1640	1700	f	>	153(0329	5	171		2055	145	073	153	113		223	192	181	-	031	124	181
	ACC	grand.	200	4.0.	80	22	92	-92	92	62	-93	-93	-93		7	66			2	-93		1 1	0	6	76-	46-		46-	-94	46-		194	-94	-94
	PA.	ACC	DA	03-50-	11	0.2	-07-	-111	-04-	Ci	-18	-08	00	5	5	-16-		N 1	-	0.7		-29	Ci Ci		1.1	(N		-14	-04	90		-30	-03	-08
	11) 22	Ä	MO	3-	12-11	03-02	-/-	-80	17	1.5	-90	04-	10-	b	000	-90		06-17	- 60	-60		100	-90	C)	02-	50		-80	05-0	02-06		04-	-90	-90
	TABLE	Ad		4	6	S	0	0	4	63	9	107	CO.		-4	4		10		m		or √0			20	in		r-i	9	+-1		7	40	4
		00 00		111	3	نيا	Ш	3	LLI.	3	ш	3	ш		3	3		3	3	ш		W L	Ш	3	3	3		نيا	Ш	لنا		ننا	لنا	1.1
		$\mapsto \infty$	<u>ا</u>	100	E	IO.	(C)	כט	<u>17</u>)	(ii)	67	1	ŧ		n	ហ		13		1		; ; II			17 14	1		i I	E SI	IO.		H N	50	I S
		1.	<u></u>	H	工	1-1	+(-	\perp	Н	I	I	,		5-4		j	i-d	工			- ala		land.	andre							57.5	11.00
																																		,
		93	12/12	20	390	420	420	420	420	420	69.	80	410		420	420		.420	420	430		720	770	960	169	390		400	420	420		420	420	,420
		LOC		7.4		100	96		-	-	7.1	7.1	100		-	7		~	-	~		017.7	. 1	~				(m)	-	1		7	1	1,7
				R017	R017	R017	R017	R017	8017	R017	R017	R017	R017		RO17	ROI		R017	R017	ROI		00	0.1	0.7	R017	P017		R017	8017	801		R01	R01	R017
		0_ 0:	CO E	SUS	SDR	SD	SD	SD	SD	SD	SD	SD	SID		2.0	SI		SD		SD		SD	a a	SD	CS	C D		CIS	SD	E S		SD	SD	SD
		S =	يا (vi	~ G	9	9	9	\$ 920	×0	920	920	9		9	9		920		5		076			920	7.0	2	920	920	0.74	3	920	920	076
		RTE	DN T	0.2	07	20 1	0.7	107		1 07			20 1		07	1 07		1 0		1 07								red.		*			7**	q-f
			DIS.	-	-	1.1	1.1	Ţ		===	Ť	∵	~i	8	9-4 9-1	7.7	1"	*	~	-			4 11	₩	7	-	4	##	1.1	÷	4	1.1	+1	ΨŤ
		Ţ														K	15	1																

04-19-99 PAGE 2	PERSN 0 L 0 L 0 L 0 L 0A M SD K I S 0 S 0 S 0 S 0 F 0 P P C 0 C 0 C 0 C 12 V 12	00 U2F 34 B 00 U1D N4 B 00 U2D N4 B	00 V2D V3D N	17 A	00 V2F NK B 00 V1F NK A 01 U2F NK A	00 V1F F	00 VIJ N< B	00 01F RC B 01 02F 44F NC B 00 01H NC F	00 U2F FY E 00 U1J NY B	00 43H 44G NY C 01 44F 44 C	00 44B FY C 01 446 JY C	01 U2F 44H 10H 6C B	00 U2F N 8	00 VIF NC B	03 U2F N< B 02 U1F N< B	04 U2F NK B	01 44F V2D 50 N	02 U1F N(B 03 U2F 5(B	03 01F RK B 01 44F NK D 00 02F FK B	01 UZF NK A	01 UIF N4 E 00 U2F 13B N4 B	00 U2B F E	00 V2F N< E 00 V1F F< B
	R T I H R I I I I	Z E Z E	3 H 3 5	11441 3233 1418 1418			U Z !	11 13 11 12 14 - 14 14 14	E N I	C E 1 C	D E 1		4 KO -	1 H H	Y U Z H	2 A	23 CE EE E	2 C C I	1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 A E 1 A	2 H Z		2 AN3 <
	ENVIR R R T NO COND C W O MTR W L S C C VEH	A A H A D 02 A A H D D 02	A A H A B 03	1 D A H A E O1 D A H D E O1 C A H A B O2	A A H D C O	A H H A B O	AAHADO	CAHDDO	AAHADO	AAHAE OI AAHDF OI	AAHDF	CAHAD	BAHADO	CAHDA0	AAAHAD02	ACAHDDO	AAAHDFO	AAAHADO	B C D G A F O	AAAHADO	BAAHADO	BBAHDBO	а н а н а р о
RECORDS	COMMON P E ACCIDENT C C NUMBER F W	968509840 6 A	968510782 6 A	968510637 1 B 968509664 1 A 968510252 3 A	968512216 5 C	68512207 3	968504504 6 A	968512529 3 A	968510942 3 A	N 00	68506650 4 68512097 5	68511724 1	968512614 3 A	968512097 3 A	968512614 3 6	968512663 3 6	968507304 6 6	968512378 6 4	968504504 C 3	968512529 6 /	968512466 6 1	968510942 6 3	968512663 6 (
TABLE B ACCIDENT	ACC ATE DA	07-06-94 1330	05-09-94 1815	10-01-94 2325 05-29-94 2030 03-28-95 2040	-23-95 16	07-08-95	07-25-95 1	11-12-95 2130	12-01-95 1445	09-23-95	06-10-95 0	12-14-96 1	02-10-96 1730	03-03-96 2100	06-23-96 1525	09-14-96 2125	02-04-96 1300	05-31-97 1806	10-24-97 0550	03-2	05-18-97 1430	5 01-03-97 1645	3 03-11-97 1645
1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	N N N N N N N N N N N N N N N N N N N	H H	H H H H H E Z	ii i		LTJ CU	ISU	ISE	1 1	шш	ю ы	H - E 7	I 55 EL 1	I S E I	ISUZ	H H H	15 E 7	H H H S S S S S S S S S S S S S S S S S	1 <u></u>	H - E 1	9 M - H	ISE
	P LOC R POST E MILE	RO17,420	017,730	017,740 017,750 R017,320	w .	RO17,400	017.4	R017,420	R017,420	R017,700	017,740	RO17,169	R017,290	R017.420	R017,420	R017,420	017,860	RO17.169	R017,210 R017,230	-	R017,400	R017,410	8017.420
	S D F	6 SD	e sp	S SD		0 S.U.S.		qs 9	e sn		8 SD		ds 8	e sn	e sn	e sn	ds 9	e SD	6 SD	-G	ds 9	ds 8	18 9.
	RTE DIST NO	11 072	11 070	11 076 11 076 11 076	1 07	11 072	1 07	11 07	11 07	-1 -	85 11 076		11 07	11 076	11 07	1.1 07	11 07	11 07	11 07		11 07	11 07	11 07

						300	TABLE B ACC	ACCIDENT	RECORDS)4-1	04-19-99				Li.	PAGE	1.1		(22
	RTES		P LOC R POST		H 88	SO	D ACCIDENT	TIME	COMMON	90	ΔÖ	COND		R 7	W 3	F NO		ЯН	DI	SH	PE	PERSN K I	0 C 0 C	200	0 0	70	00	0		\$3	
DIST	DIST NO F CO	000	لمقا	1 1			Y MO DA YR	HHMM	NUMBER	11	3	4	co .	_	0			02	1-1-									4-4	⊃	7-4	£ά
11	920	CS	R017.420	±.	TO.	LU LU	5 03-27-97	1410	968512663	9	$\langle \mathbb{Z}$	Ø	< □	Ξ.	D A	0.0	E <	ша	H 0	~ `	88	000	VZF	1 1				22	PH I	< <	~ ~
7	920	CS	R017,420	н	10	Ш	7 06-07-97	1535	968511085	9	M	€	<	I	O A	200			7	,	000	00	C2F	i i			1		1 M		~~
***	076	SD		H		Ш	4 06-18-97	1255	968506650	43	C	Æ	₹	I	A	D 02		ZW	m H	V V	000	000	V110 V2F	1 1				z L	M M	¢ ∢	~~
+	920	T.S.					7 07-26-97	1015	968504504	~0	Œ	Œ	<	I	A	D 02	HH	ZW		V V	000	00	V1D V2F					22	マス		~ ~
	0.74	T S				3	05-03-98	1/7	968509796								a a		ოო	~ ~	000	00	UIB					IZ	M M		~ ~
· -	076	ST				3	07-19-98		968513376								C C		T-1 T-1	~ ~	000	00	V1F V2F	1 1		1		22	四四		~~
	076	SI				ш	3 05-05-98		968506650								C A	3 M		~ ~	000	00	V1F V2J	43H			1 1	ZL	四四	< C	~ ~
+	076	1 2				W	01-3		968513376	1 G	pq	< <	<	I	< <u>⊏</u>	D 02	HF	ШШ	++ ++	v v	00	00	V11 V2F	1 1			1 1	ZD	A H		~ ~
,					1	L			070010070			<		0		000	HF	Z	m +	~ \	000	04	VID					IZ	~ \		V N
11	0/0	0.0	KO17 420	7	7	L	0 F 4 C4-126-176	7000	70001.4070	2					Z.	3	4 (4 m	- ~	000		i i	1		-	1		7 LU		

ACC COUNT

10

192281

A60

70	
1	
0	
-	
-	
1	
1	
=	
-	
0	
1	
-	
$\langle T \rangle$	
C	
222	
4004	
111	
-	
RATE	
n	
late.	
	H
+	63
-	,344
ACCIDENT	-
113	13
	L
CID	6
	-
السا	
0	>
AC	-
-	ï.
	5
SELECTIVE	-
>	-
had.	H
	ŝ.
	-
w	4
Iti	
- 1	1
* *	5
LL.	100
w	Š.
	-
	c
m	
join!	120
	10
1.1	
-	
344	
KT.	
TABL	
-	
to	
0	
-	
U.	
FASAS	
1	
100	

-A 05-27-99

D. F.		X 1.1	~d	=======================================	₩.	₩ ₩	***	***	1-4 2-4	× 1.1
2 0		\times	\times	\times	×	\times	×	\times	\times	×
ez i-										
AUT AUT R	25									
AUT AUT R	177711									
	E									
	7, 1 %									
AVE	300									
< □			ÇL.	0.	Ω.	0_	<u>a</u> .	0	Q.	0
SEQ	3 3									
တင	د	Jeel.	Pet:	\vdash	[mi]	\vdash	m	Н	\vdash	\vdash
		40	40	018.940	018.940	018,940	018,940	018,940	018,940	018,940 I
		018,940	018,940	8	80	80	00	0	ω	8
SELECT LOCATION	1	0.1	0	0.1	0.1	OI	1.0	0.1	0.1	0.1
DCA		O.S.	8		P.6	SID	3.0	3.11	ES.	0.5
ĭ		-9°	9-90	194	199	90	201	017,866-5D	9.9	017.866-81
EC.	2"	88	8	00	8	8	8	ũ	œ	œ
SELE	7000	017.866-SD	017,866-50	017.866-SD	017,866-51	017,866-5D	017,866-51	017	017,866-50	017
		CS	SI	SD	CS	SD	CS	SD	SB	SD
		98	5	22	8	94	10	96	43	98
OD C	0	31/	33	31/	31/	31/	31	31/	317	317
T X		12/	12/	53	13/	13/	12/	13/	12/	12/
TIME PERIOD		1	- 1	CI	33-	74-	13.5	-96	-16	98
X X	9	11/	3.7.7	1.7	37.	17	7.7	7,10	1.7	01/
F	L	01/01/91-12/31/98 SD	01/01/91-12/31/91 SD	01/01/92-12/31/92 SD	01/01/93-12/31/93 SD	01/01/94-12/31/94 SD	01/01/95-12/31/95 SD	01/01/96-12/31/96 SD	01/01/97-12/31/97 SB	01/01/98-12/31/98 SD
9 1	-4	Ţ) -		1	_	-	1	<u>∠</u>	-
Ш ∞		9.20	920	920	920	920	920	920	920	76
o∠ _1 }		O T			0			O I		0 H
< €		Ξ Ω	E	U	O		ω	C)	ĭ	O
REG	S	1000	2000	0003 C H	0004 C H	0005 C H	H 3 9000	0000	8000	11 0009 C H 076
TE		# #			and and	17	7-1 100	1.1	₩.	11
		*	*	水	*	*	*	帐	*	*
1	302	*	*	*	*	*	*	水	*	*
1200	MESSAISE	*	*	÷	*	*	*	*	4	*

STEVE DEMNY DARNELL

0.	6	5	0	0	٥	0	Φ	0.
TOTAL REQUESTS READ:	TOTAL CARDS READS	PROCESSED:	NOT PROCESSEDZERRORS:	NOT PROCESSED/TIME:	TOTAL REPORT/SPECIAL DUTPUT:	SPECIAL PRINT REQUESTS:	NOT PROCESSED/TIME:	REPORT LINES:

*** END AXR251 ***

A62

	LION	
Ę.	CULAT	
RICT	CAL	11
DISTR	RATE	LINATIO
pq	T	137
TABLE	ACCIDE	211100
TASAS	SELECTIVE	

3-A 05-27-99 Panky/(Ouser

TOT.	1.47	1.47	1.47	1,47	1.47	1.47	1.47	1,48	1,46
ACCS/MU+ OR MUM-* AUERAGE OT FAT F+I TOT	.77	.77	.77	.77	.77	.77	.77	,78	.77
CS/MV- Al FAT	.029	.029	.029	.029	,029	,029	.029	, 030	.00 .029
TOT	2.07	3,76	.54	1,61	5.54	1,61	4.82 .029	4,20	00
DENT RA ACTUAL F+1	1.07	2,68	P.7.	.000 1,07	5.54	1,07	1.61	1.20	00.
ACCID Y FAT	.067	.537	000'	000'	000'	000.	000	000.	000
TOTAL *-ACCIDENT RATE WY+ OR V ACTUAL NUM FAT F+1 TO	14,96	1.86	1.87	1,86	1,86	1,86	1,87	1.67	2,12
*ADT * MAIN X-ST	4.00	4,00	4.8	4	4,8	4	4	4,3	5,4
PER ↓ KLD INJ	4 W	42	0 0	00	°	00	04	0.03	00
	16 H97	5 H97	0	44	- graf	**	n	5 H99	0
FICA	64	0	0	0	++	0	\forall	0	0
SIGN. JLTI JEH	6	+i	TH	64	0	H	m	1~1	0
ACCIDENTS/SIGNIFICANCE* / / MULTI INJ F+I VEH WET DARK	¥4 40	5 H97	***	01	÷	64	o ·	C4	0
	57	445 445	H	Ø	***	2.	m	CI.	o :
ER OF	-	_	0	0	0	0	0	0	0
RA *-NUMBER GRP / J	31 H95	7. H97	++	m	ri	m	6 6H	7 H97	0 /
RA * GRP	H03	H03 (R)	H03						
z	96 MO	12 MO	12 MO	12 MB	12 MD	12 MG	12 MO	12 MO	12 MO
IPTIO	018,939 98-12-31	018.939 91-12-31	018,939 92-12-31	018,939 93-12-31	018.939 94-12-31	018,939 95-12-31	018,939 96-12-31	018,939 97-12-31	018,939 98-12-31
DESCR	THRU SD 91-01-01	THRU SD 91-01-01	THRU SD 92-01-01	THRU SD 93-01-01	THRU SD 94-01-01	THRU SD 95-01-01	THRU SD 96-01-01	THRU SD 97-01-01	THRU SD 98-01-01
N O I	17.866 1.074M	17.866 1.074M	17,866 1,074M	17,856 1.074M	17,866 1,074M	17,866 1,074M	17,866 1.074M	17.866 1.074M	17.866 1.074M
A),1),1	25 25	E)(Ŭ \$	8 5),E	30	E 80	0.5 0.5 0.5

A63

READ FROM TABB DURING THIS EXECUTION,	OUTPUT		SUMMARY RECORDS	RECYCLED RECORDS	RECORDS PRINTED	 TOTAL
DURING		-	0	0	0	6
TABB						
FROM						
READ		-	818	1878	33	
WE RE	II		REQUE	REQUES.	RECORI	FOTAL
RECORDS WERE	TAPUT		SUMMARY REQUESTS	RECYCLE F	REPORT RECORDS	 101
6			0		6	6

9

155

TABLE B ACCIDENT COUNT PER REQUEST

ACC COUNT

フェのようりつ

PAGE 1

-A 64-19-99

140.0	
la	
10	
-	
-	
0	
-	
100	
-	
0	
- KT	
27	
-	
6.3	
lai	
jeer	
C	
(%	
J.E.	
	DC.
	760
1	
14	0
	u
100	0
	lean c
2	
	>
C	1
	1
	5
	INI
	2
IVE	TIVI
IVE	2
IVE	2
TIVE	2
IVE	2
ECTIVE	ACTIV
ECTIVE	ST ACTIV
ECTIVE	ST ACTIV
ECTIVE	ACTIV
SELECTIVE	ST ACTIV
ECTIVE	ST ACTIV
SELECTIVE	QUEST ACTIV
B SELECTIVE	QUEST ACTIV
SELECTIVE	REQUEST ACTIV
ALE B SELECTIVE	REQUEST ACTIV
BLE B SELECTIVE	REQUEST ACTIV
ABLE B SELECTIVE	REQUEST ACTIV
ABLE B SELECTIVE	REQUEST ACTIV
APLE B SELECTIVE	REQUEST ACTIV
TABLE B SELECTIVE	REQUEST ACTIV
S TABLE B SELECTIVE	REQUEST ACTIV
TABLE B SELECTIVE	REQUEST ACTIV
S TABLE B SELECTIVE	REQUEST ACTIV
ASAS TABLE B SELECTIVE	REQUEST ACTIV
ASAS TABLE B SELECTIVE	REQUEST ACTIV
S TABLE B SELECTIVE	REQUEST ACTIV

	JT ADT R RR PR	11	11	1.1	eri Fi	1.1	Ť.	eri eri	1.1	1.1	
	PC PC ADT IN FA MAIN										
	AVE										
	SEQ R A 123 T P		۵	Q.	a.	۵	2	۵	α.	<u>c</u>	
	80	021,440 I	021.440 I	021.440 I	021,440 I	021.440 I	021,440 I	021,440 I	021,440 I	021,440 I	
	ATION										
	SELECT LOCATION BEGIN END	018.940-SD	018,940-SD	018,940-SD	018,940-SD	018.940-SD	018,940-SD	018,940-SD	018,940-SD	018,940-SD	
	TIME PERIOD FRON TO	01/01/91-12/31/98 SB	01/01/91-12/31/91 SD	01/01/92-12/31/92 SD	01/01/93-12/31/93 SD	01/01/94-12/31/94 SD	01/01/95-12/31/95 SD	01/01/96-12/31/96 SD	01/01/97-12/31/97 SD	01/01/98-12/31/98 SD	
		 	 	}~~	 	ļ.	-	H	<u>-</u>	⊬	
	REG A L RTE NO S T	11 0001 C H 076	11 0002 C H 076	11 0003 C H 076	11 0004 C H 076	11 0005 C H 076	11 0006 C H 076	11 0007 C H 076	11 0008 C H 076	11 0009 C H 076 T	
	III	v 15 1775	1.1	1.1	γ-i !	**	1.1	444 444	₩.	1.1	
		-k	*	*	*	*	本	*	*	*	
	Ð	*	*	*	*	*	*	*	水	*	
ē.	MESSAGE	*	*	*	26	*	*	*	*	*	

5	6	6	0	0	٥	0	Φ	0
TOTAL REQUESTS READ:	TOTAL CARDS READ:	PROCESSED:	NOT PROCESSED/ERRORS:	NOT PROCESSED/TIME:	TOTAL REPORT/SPECIAL OUTPUT:	SPECIAL PRINT REQUESTS:	NOT PROCESSED/TIME:	REPORT LINES:

*** END AXR251 ***

A68

TASAS TABLE B DISTRICT 11 SELECTIVE ACCIDENT RATE CALCULATION ROUTE SEQUENCE

-A 04-19-99

₩₩ TOT	.48	1.47	1.47	1.47	1,47	1.47	1,47	1.48	1,48	
R MUR	कर्न									
V+ OR M AVERAGE F+1	.77	.77	.77	.77	.77	.77	.77	.78	.78	
ES/MK	.030	, 029	029	,029	.029	.029	.029	030	.030	
TOT	2.5	1.60	1.59	C1 C3 C3	2.03	3.00	1,84	4.90	3,61	
ENT RA	1,33	1,14	1.14	1,60	1,14	2.08	6- 61	2,06	C1 107	
FAT	,059	000.	000	000.	000'	.231	000.	.258	000.	
TOTAL *-ACCIDENT RATE ACCS/MV+ OR MUM-* MV+ OR FAT F+1 TOT FAT F+1 TOT	33.95	4,38	4.39	4,38	4.38	4.33	4,35	3,88	3,88	
*ADT * MAIN X-ST	7.4	4.8	4.	4.	4.8	4.8	4,8	4,3	4,3	
PER *	22	10	0 8	13	0 8	1 4	0 10	101	0.01	
	31 H97	Cá	4	4	C)	4	es	7 H97	5 H90	
FICAN WET I	4	0	0	C	0	***	0	v-1	OJ.	
ACCIDENTS/SIGNIFICANCE* MULTI INJ F+1 VEH WET DARK	26	es es	D	Ø	64	Cd	4	4	m	
ENTS/	45 H99	υT	In .	7 149.2	כע	197 197	4	H97	U.	
	43 H99	Ŋ	D.	7 H92	רע	8 H97	4	7 H95	Ø	
ER OF	C4	0	0	0	0	H	0	-1	0	
10 TO	87 H99	7	~	10	6	13 H97	တ	19 H99	14 H99	
RA *- GRP (RUS)	H03	H03	HO3	H03	H03	H03	H03	H03	H03	
	Ę	£	W W	W WO	£	æ	Σ	WO WO	WO WO	
0	1 96	1 12	12	1 13	1 12	1 13	1 12	1.22	12	
4	021,439 98-12-31	021,439 91-12-31	021.439 92-12-31	021,439	021,439 94-12-31	021.439 95-12-31	96-12-31	021,439	021,439 98-12-31	
2	07	10	~ O	FI C	0.4	7.0	0.1	77	0.1	
DESC	THRU SD 91-01-01	THRU SD 91-01-01	THRU SD 92-01-01	THRU SD 93-01-01	THRU SD 94-01-01	THRU SD 95-01-01	THRU SD 96-01-01	THRU SD 9701-01	THRU SD 98-01-01	
z	18,940 2.500M	18,940 2.500M	18.940 2.500M	18,940 2,500M	18,940 2,500M	18,940 2,500M	18,940 2.500M	18.940 2.500M	18.940 2.500M	
F										

A-69

TASAS TABLE B DISTRICT 11 SELECTIVE ACCIDENT RATE CALCULATION END OF JOB

9 RECORDS WERE READ FROM TABB DURING THIS EXECUTION.

DUTPUT	The state of the s	SUMMARY RECORDS	RECYCLED RECORDS	<u>ж</u>	the case and the case that the case that the case that the case the case the case the case the case the	TOTAL
		0	0	0,		0.
UT	section on the contract of the	REQUES		RECORDS	And had had the last and the time the time the time the time and time and time and the time time.	TOTAL
TUCKE		SUMMARY	RECYCLE	REPORT		1.0
	1	0	0	6		6

	RTES		9	TABLE B ACCIDENT RECO	S N P ENUIR R R T NO	04-19-99 PAGE D V S PERSN 0 L 0 L 0 L 0 A M S
DIST	NO F	00	R POST E MILE	لنا	NT C CONB C W O M	K 150505050 F0
1.1	920	SD	019,330	H - W 3 05-07-91 1045 96851	0039 5 A A A A A F 01	W 1 < 00 00 44F N< 1 < 00 00 99F <<
1.1	076	SI	019.410	H - E 7 09-14-91 2300 96851	0782 1 A D A H D A 02	E 1 < 00 02 U2D 6< N B U1 < 00 02 U1F N< B A
111	076	SD	019.450	H - E 7 11-23-91 1325 96851 H - W 1 06-02-91 1255 96850	0969 4 A A A H D F 01 9599 6 A A A H D A 03	E 1 (00 01 44H 27H 5 (C A D 1 (00 00 V2D 5 (1 A D D D D D D D D D D D D D D D D D D
		F	1			E 1 < 00 01 UIF NY B A
ન # # ㅋ # #	076	SST	020,900	H - E 1 07-14-91 1700 96850 H - E 2 08-12-91 2120 96850	8917 5 A A A A A E 01	E 1 (00 02 11H F(I H F I C C C C C C C C C C C C C C C C C C
	- P-	310) 0	- W 7 04-18-92 2000 96850	433 1 A D A H D A O	E W 1 < 00 00 VIF << B A<
1,1	920	SD	019,070	-92 1235 96850	8917 5 A A A H A A 02	E 1 < 00 02 UIF N(B A W 1 < 00 02 UZD F(N A
1.1	076	E S	019.070	H - W 3 12-32-92 1745 96851	1888 6 A D A H D B 02	E 1 < 00 01 U1F N< B A U - < 00 00 U2D N< N G
	1 1	l P				E - < 00 00 UIH NK B A
7 F	076	SD	019.090	H - W 1 09-27-92 1045 96850	8562 5 A A A H D B 02	u - < 00 00 V2D 6< N A
	P	in in	9	- F & 09-09-92 2220 94850	444 4 A T A H T F O	E - < 00 00 V1F << B A F - < 00 04 28H F< C B
11	076	SD	020,200	30-92 0745 96850	7224 6 B A A H A B 03	E 1 < 00 00 U2D N N A
7	!	Ç	- 5		1 4 L CC+	U 1 < 00 01 U1F N< B A
A	076	STI	019,090	H - E 5 04-15-93 0640 96850	9433 3 A D A H A E UI	E - < 00 02 24H 43H N< C E E - < 00 00 13H 24H 5< C A
]]	920	CS	9.12	- E 7 06-12-93 2035 96851	888 1 A D A H A E	E - (00 00 13H 64 C B
-1 + -1 +	076	D a	300	- U 6 04-02-93 3200 96851 - U 6 04-14-99 1555 94951	616 5 A D A H D E	2 - < 00 03 25H N< C A
7	7 7	9 6		4307 ACC1 CO 30 CA 3 H		U - C 00 01 23H 44H NC B A
T 7	0/0	O C	017,700	G 1450 78600	20 4 4 4 4 6 6 7457	W 1 < 00 00 VID W< E A
1.1	076	SD	019,980	H - E 6 05-07-93 1650 96850	6433 5 A A A H D C 02	E - (00 03 U2F F(B A
	1	366.967	3			E - < 00 00 VIP 12H N< H A
더 다 더 더	076	SD	020,940	H - E / 02-13-93 1950 96850 H - W 7 08-28-93 1540 96850	8715 1 A D A D E 01 6433 5 A A A H D F 01	U - < 00 01 44H 4< C 8
	920	SD	0.1	- W 7 08-28-93 1541 9685	715 1 A A A H D F O	W - < 00 01 44H 5< C 8
	920	S.D	60.	- W 7 03-26-94 1345 9685	637 6 A A A H D A 0	u - < 00 02 V2D N< B A
1.1	076	SD	019.090	H - E 7 07-16-94 1030 96850	9840 6 A A A H D F 01	E 1 (00 01 44F 23H L L 8 A
11	920	CS.	19,10	- W 1 10-16-94 1815 9685	BBBSAAAAAAO	W 1 < 00 00 V2D 6< B 6
	1	SD	9,11	- E 3 06-21-94 0545 9685	650 5 A A A H A F	E 1 (00 02 44H 24H 13H 4(C G
	1	CS	9.35	- W 4 12-21-94 0020 9685	599 4 A D A H D E	W 1 < 00 00 23H 44F L< C A
 	076	23 C	019.670	0-60 9 M	6433 6 A A A H D E 01	U 1 < 00 01 24H 44H 5< C A
	1	SIS	08.0	- W 2 12-19-94 0710 9685	304 5 A A H D F	W 1 < 00 00 44H L< C A
	74.0	c c	000	2070 0001 00-01-11 2 11 -	0 3 4 7 7 7 7 7040	E 1 < 00 00 << N <
1.1	076	as	019,380	H - 4 5 09-14-95 1830 94851	0601 5 A A A A D F 01	W 1 < 00 02 44H N< C A
1.1	920	SD	019,380	H - W 1 09-24-95 2130 96850	09664 1 A D A H D E O1	<pre>< 1 < 00 00 99H << R < W 1 < 00 00 23H 5< C B</pre>

£/	S H					, , , , , , , , , , , , , , , , , , ,			
	COZ	M	ZAURZAA	DUUZA	四世四日			44.44.00.00.00.00.00.00.00.00.00.00.00.0	
C.	123					XX9XXX4X9;		~~~~~	~~~~
0	700				1 1 1 1				~ZZ0Z
	000	1111114			1 1 1 1				2278
	080	28H	4 4 4 4 4 4 4	44B	1 1 1 1		V4D	IMILLI	P
	700	TOTAL STREET, AND ADDRESS AND	1 1 1 1 1 1 1		1 1 1 1		4	44	4
6	0 8 0	26H 44AB 44AB 23H		V2B	1 4 4 H		U3D U1F U1F U1F	1 4 6 4 1 E	4 AD
66-	100								24111
Ď.	000	444 278 234 278 278 498 444 474 274			43H 710 711 111	426 44H 44H 44F 44F 111H 27H	43F V2D V1F	234H 234H 234H 233H	727 727 747 787 787
04	20 N	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000	0070	000000000000000000000000000000000000000	000000	044080	44000
0	교	00000000	9999999	0000	0000	000000000000000000000000000000000000000	0000000	0000000	00000
	00 H	~~~~~~	~~~~~~	00000	0000	000000000000000000000000000000000000000	888888888888888888888888888888888888888	0000000	00000
	> I H		-	1	-0	~~~~~~~~~		~~~~~	/ /
	$A \vdash \alpha$	зымзззям	2 2 2 2 2 2 2 2	333ш:	3266	3003330000	(m = = = = = =	ਰਜਜਜਜ · ·	4 1 1 1 1 1
	9 ⊢	COSECUE	∢wxx∢ook			00000000000000000000000000000000000000		33 43 3 4 5	33 2 3 3
							,	THEHE	IOVOI
	NO MTR VEH	000000000000000000000000000000000000000	© ⊣N ⊣∺-	N N .	HEL CA	निचननननन	42		
	H D U	7 M M M X M F M F M F M F M F M F M F M F	그 사용 그리다	0 0 0	00 0	0000000000	0.5	000000	02
	23 U				1 E E		2.0	ក្រាក្រាក្	田 正田
	α					PARAKARAR 	1,5	999999	8 88
	e _ 0					HIGAGGGGG		EIAILI	III
	ENUI COND W L 8	CHCCCCCC			IM «		100		< <<
		a		< < <					
	201	N -1 N 0 0 0 0 0 0 0	THE CHARLES THE PROPERTY.	4 40 11	7 m v	กายฉอกปลาก	ether .	100440	0 10 0
50	COMMON ICCT DENT	685 111 655 656 656 656 656 656 656 656 65	० नात जन्म	CA AB A	54	853 853 853 854 855 855 855 855 855 855 855 855 855	96	00400	00 4 61
ECORDS		0.096 0.006 0.006	4 70 440	25 25	0 0 0	108/ 237/ 237/ 237/ 337/ 143(979	2309	30 30 78 78
2	CCCD		000 000 000 0	10 10 15			0	20222	512 507 510
ix.	≪.	999999999999999999999999999999999999999	20,000 00,000	0 0 4	968	9688 9688 9688 9688 9688 9688	φ γ ω	0000000 0000000	683 683 683
ACCIDENT	WE	000 200 200 200 200 200 200 200 200 200	5 5 5 5 5 5	0 0 0	0 0	10000000000	100	00000	0 00
- 8	TIME	722777777777777777777777777777777777777	a commina		090	02011000	60	230 349 625 625	915 615 820
300	IDEN T YR H	a ai ai ai ai ai ai ai ai	0.00 0.00	9 9 9	9 9	444844804		0000	200
50	CC 3	8-9	00 000		0. 0.	-97 -97 -97 -97 -97 -97	79-		99 97
id	< ₹ □	797770070	००० लन्त		0 0	-025 -125 -125 -035 -256 -266	10-		6 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AM	Q.	011000000000000000000000000000000000000		- 4	m (n)	THE DISTING TO	1 1	1111	0 0 0
	日《》	431171615			4 0	H-000000H0	- 0	00000	8 8 4
	GOI	зыпзззымз			ш	E E E E E E E E E E E E E E E E E E E			- 01 W
	$\mapsto \infty \supset$	1 1 1 1 1 1 1 1 1	1 1 1 150	1 1 1	i 1		- 1	3 1 3 3 3	3 33
	L	TITITITI	TI IIH	III	エエ	ITITITITI	20 100		1 1 1 I I I
		180 200 200 100 00 00 00	000 000	20 2	0 0	200 200 200 200 200 200 200 200 200 200	0 0	00000	0 00
	LOC POST MILE	W W W W W W W W W W W W W W W W W W W	G. G. → G. G. C.	9 74 10	40 Dr		0 0	10 0× 00 0× + +	210 240 400
	Jag	019 019 020 020 020 020 021	021 021 019 019	20 20	0 0	0000000000			
	可以正	00000000	00 0000	000	02	010010010010010010010010010010010010010	0.00	020 020 021 021 021	0 00
	8	SSBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	88 8888	9 8 8	0 0		-		
	8 D F	00000000000	SD CS	SD	SI	SD CS	SD as	assa see	SES
	LL	726 726 726 726 726 726 726 726	20 0000	9 9		22225555	50 o		
	Z 8	000000000	070	07	070	07/0 07/0 07/0 07/0 07/0 07/0 07/0 07/0		076 076 076 076 076	076 076 076
	co.		ਜਜ ਜਜਜ				- 0	t	200
	DI	******	HH HHH		11	# # # # # # # # # # # # # # # # # # #	TH TH	ਰਜ਼ਰਜ਼ਰ _ਹ ਜਜ਼ਜ਼ਜ਼ਜ਼	
						A 72			70 HE
and	0					11.0			

n	80.0			V .		~	~	V	VV						2 62
7.	1 SD	< <		ďβ					čů			Č <			
Ш	C L N	~ ~) PA	~ ~	3 -J	Y B	7	Q	~ ~ U &	2	~	~ \	. ~	マト	90
PAGE	0 T T	22		Z				45.	zv	Z	Z	22		z z	
	700		i		-		1		1 1	1	-				1
	100			1 1	1	i	1		1 1	1	-	1 1	1		
	000	44B	3 1	1 1	i	1	ļ	i	1 1	į		1 1			- 1
	700	43B	1	44F		1	4H	ĺ	1 1	1	1	1 1	1	100	5 1
66	000					I	T I	i m	1 I	1					
04-19-99	000	24B		23H				23.B	24H	27B	020	O1F D2F	5	U2D 01F	11
0.4	PERSN K	001		000					000	00	00	000	00	000	00
	다 피 노	000	00	000	00	00	00	000	000	00	00	80	8	00	00
	00 H	~ ~	~	Y Y	~	~	V ,	~ `	~~	V	V	~ ~	~ ~ .	V V	~
		34		33	03	3					님	34	1997		7
	C-	00												73	A
	NO MTR VEH	01	10	001	0.3	7	7 7	7 7	7.7	0.1	0.73	0.1		N O	0.1
	H00	لنا لنا					u L			Ш		Ξ		a a	Ш
	230	A A	R	EA	F	1	7 <	I F	7	P	Я		F	n	
	യ പ	II						9 :			I	I		E	I
	Z Z Z	44						9 <			A	DA		Œ Œ	D B
	ENVI COND W L	C C						J F		V.		<		I	H
	عديد		N D		O	*	Ť 7	- 1	7	Ç	9	ЦЭ	,	0	
SO	COMMON ACCIDENT NUMBER	968512378 968506506	796	2190	330	0	100	7 7 7 1	0	51.4	99	000	< 1	2	30
8	COMMON CCIDEN NUMBER	1230	60		129	0 2	124	2777	é	126	5096	53	770	0	129
RECORDS	NE CO	685123	68209	685	6851	2007	70070703G	200	0	w	685	685	0	000000000	968512939
				V C	Ç.					Û.	0	100			
ACCIDENT	NT TIME HEMM	535	0920	2255	852	0000	00000	000		750	230	2025	4 4 0 0	2	2040
CCJ	出 &	000			8				6	-					
B	Z E Z	3-98 4-98	3-98		86-	00	000-	-1		1	00	861	00		86-0
		7 0	7.5	a Ci	- 3.4	1	444	10	ă i	Ci i	ČQ I	5	-17		-10
ABLE	25	000	00	60	07	5	50	0	}	08	0.4	90	0	2	0.1
1	A & >	NO				7	. 1	. 4		0	0,	7	C		7
	T N H	3 11						l Li		3 1		LLI			3
		II						I		I E:	i II	I	1		I
															-
	h- 117	000	.360	370	210	020	000	300		015	40	800	.900	1	40
	LOC POST MILE	0.0	0.0	0	0								0		021,040
	T C X	019	0 0	0.1	0.1	00	0.0	020		0.40	S.	020	020		S
			~ ·		~	_					~.	-			
	8	SUS	in in	S	50	115	5	ES.		7 0	n	SD	53		ES.
	RTES U NO F	076	76	176	76	76	176	076	ř	0 0	0	920	076		076
) ()	0	0		0
	TSIU	기 기	-ii	11	;! ;i	7	7	1	7	- + - +	7 7	1	1.1		
	P-1														

hurs. 4/1/9		3 AXLE	14	EB	1	5+ AXLE	T	TOTAL	\neg
3500 (6)	CARS	3 AXLE		ANLE	ľ	J- 70122			
EGIN		_	\neg		\neg		7	-	
2:00AM		1	0		0		0		
15		2	0		0		1		1
30		2	0		0		0		- 11
45		1	0		0		0		-
OTALS		6	0		0		1		7
							0		
MA00:		2	0		0		0		
15		/.1	0		0		0		
30		2	0		0		0		_ 1
45		7	0		0	-	0		7
OTALS	-	-	-						
MA00:5		o	0		0		0	1	
:15		a	0		0		0	1	-
:30	15	0	0		0		0	3	- 1
:45		0	0		0		0	_	
TOTALS		0	0		0		0	1	0
	1				-			1	1
3:00AM		0	0		0	1	0	1	- 1
15		1	0		0	1	0		
:30		1	0	ĺ.	0				
:45	-	0	0	-			_	3	2
TOTALS	-	2	- 0		_				
70200	1	0	0				1	0	
4:00AM		0	0		- 1			0	1
:15	1	1	0				1	0	
.45		10	0		_	0	- 3	2	
TOTALS	1	11	0			0		2	13
TOTACO	1								
5:00AM		2	0			0		0	
:15		11	0			0		1	
:30	4	3	C			0		0	
:45		6		+	_	0	_	2	26
TOTALS		22	(_	0	_	3	25
								0	20
6.00AM		12	(0		2	
:15		20				0		3	
:30		15		0		0		4	
45	-	73		0		0		9	82
TOTALS	-	73	_	-	_	1			
7:00AM	. 1	15		0		0		6	
,15	1	20		0		0		5	
:30	1	24		1		0		5	
:45	1	25		0		0		6	
TOTAL	s	84		1		0		22	107
			7/2						
8:00AM		25		0		0		5	
:15		20		1		1		6	
:30	4	28		0		1		9	
:45		24		0	_	1		28	125
TOTAL	S	97		1	_	3	_	20	12.
	. 1	77.0				1		5	
9:00AN	4	40		1		1		6	
:15		38		0		ol		11	
30		301		1		0		9	
:45 TOTAL	S	137		2		2		31	17
TOTAL	-0	,3/							
10:004	AM	30		0		0		11	
:15		36		0		1		8	
:30		40		0		0		11	
:45		35		0		0	_	10	
TOTA	LS	141		0		1	_	40	18
11:00	AM	35		0		0		9	
:15		22		1		0		10	
:30		24		0		1		11	
		25		0		11		10	1

TME	CARS	3 AXLF		WB XLE	5+ AXL	E T	OTAL	
EGIN		-			-			-
		0	0			0		
2;00AM 15		1	0			0		
30		0	0		0	0		
45		0	0		1	0		_
OTALS		1	0	- (0	0		1
					0	0		
:00AM #		0	0		0	0		- 1
15		0	0		0	0		
30		1	0		0	0		
TOTALS		1	0		0	0		- 1
	1							
2:00AM	1	0	0		0	0		
15		1	0		0	0		
:30		0	0		0	0		
45	-	2	0		0	0	_	2
TOTALS		4	-		-			
3:00AM		0	0		0	0		- 1
:15	1	1	0		0	0		
:30		0	0		0	0		
:45		0	0		0	0	_	
TOTALS		1	0		0	0	-	1
		0	0		0	a		
4:00AM	1 2	0	0		0	0		
:15	1	2	0		0	0		
:30		3	0		0	0		
TOTALS	1	7	0		0	0		7
10	10				.4.			
5:00AM		3	0		0	0	1	
:15		10	0		0	0	1	
30		12	0		0	3	1	
45	_	40	1	-	0	- 5	-	46
TOTALS	+	40	-		-			
6:00AM		25	0		0	2		
:15		30	0		0	1		
:30		10	0		0		5	
:45		15	0		1		+	7.29
TOTALS		80	0		1	16	51	97
				1	0	18	2	
7:00AM		25	0		0		5	
:15	1	28	0		0		3	
:45		30	0		0		4	
TOTALS		103	- 0		0	1	1	114
	21							
8:00AM		35	0		0		3	
:15		30	0	1	0		5	
:30		22	0	1	0		7	
:45 TOTALS	-	18	0	_	0	2	1	12
TOTALS	-							
9:00AM		25	0		0		5	
:15		26	10		0		6	
:30		25	(0		1	
:45		26		1	0		5	11
TOTALS		102	(-	0		-	
	. 1	25		0	0		6	
10:00AN	1	30		0	0		7	
130	4	34		0	0		8	
45	1	25		1	0		10	
TOTALS	3	114		1	0		31	1
11:00A	M	25		0	0		8	
:15		15		0	0		7	
:30		20		0	0		3	
:45	S	31		0	0	-	24	- 1

1 - 30		0	1	1	
:30	3 4	0	0	1	
11:00PM	2	0	1	0	
11:00PM	1	0	0	0	
TOTALS	21	0	0	0	
45	6	0	0	0	
:15	10	0	0	0	
10:00PM	4	0	0	0	
TOTALS	27	0	0	0	
45	3	0	0	0	1
30	10	0	0	0	
9.00PM	8	0	0	0	
TOTALS	331				
45 TOTALS	15	0	2	1	
.30	3	0	1	0	
8:00PM	5	0	1	0	
8-00014	10	0	0	1	
TOTALS	51	0	0	15	6
:45	11	0	0	2	
:15	13	0	0	6	
7:00PM	15	0	0	5	
TOTALS	68	0	1	31	10
:45	15	0	0	7	10
:30	10	0	0	6	
6.00PM	23	0	1	10	
				0.94	
TOTALS	102	0	1	30	133
30	22	0	0	6	
:15	24	0	1	9	
5:00PM	30	0	0	8	
TOTALS	101	U		, Ji	154
45	20	0	2	31	134
:30	24	0	0	7	
4 00PM	22	0	1	6	
4:00PM	35	0	-0	10	
TOTALS	105	0	0	54	159
:45	26	0	0	8	
15	25	0	0	11	
3:00PM	30	0	0	25	
UTALS	.10				
145 TOTALS	110	0	0	43	153
:30	25	0	0	12	
:15	30	0	0	10	
2:00PM	25	0	0	11	
TOTALS	110	0	11	35	146
45	24	0	0	10	146
30	26	0	0	10	
:00PM	35 25	0	1	10	
OTALS	88	0	2	33	123
30	26	0	1	9	
15	22	0	1	8	
2:00PM					

24HR					
TOTALS	1512	9	18	450	1989
IOIMLS.	1012	-			

22220			2		
2:00PM	22	01	0	4	
15	25	0	0	2	- 1
30	30	1	1	5	
45	22	0	0	17	118
OTALS	99	1	- 1	17.	110
:00PM	20	a	0	5	
15	15	0	0	6	-
30	14	2	0	7	
45	20	ol	0	3	
OTALS	69	2	01	21	92
:00PM	A 25	0	0	6	i
15	20	1	0	5	- 1
30	3.5	0	0	6	
45	20	0	0	8	
OTALS	100	1	0	25	126
:00PM	20	0	0	6	
15	25	0	0	5	
30	25	0	0	7	
45	22	0	2	24	140
TOTALS	92	0	2	24	118
-00PM	40	0	0	3	
	33	01	0	5	
:15	32	0	0	6	
:45	25	0	0	10	1
TOTALS	130	0	0	24	154
0.17.60					
5.00PM	33	0	0	11	- 1
15	20	0	0	8	
30	22	0	0	9	- 1
45	18	0	0	4	
TOTALS	93	0	0	32	125
6.00PM	20	.01	1	5	- 1
15	22	0	0	6	- (1
30	10	0	0	4	
:45	18	0	0	18	89
TOTALS	70	0	11	18	03
7.00011	15	0	0	4	- 1
7:00PM	12	0	0	3	1
:15	11	0	0	2	
:45	9	0	0	2	
TOTALS	47	0	01	11	58
TOTACS					
8:00PM	11	0	0	3	
:15	10	0	0	2	
30	2	0	С	0	
.45	15	0	c	0	
TOTALS	38	0	0	5	43
9:00PM	6	٥	0	0	
:15	5	٥	0	0	
:30	8	0	0	0	
:45	3	0	0	0	20
TOTALS	22	0	0	0	22
			٥	0	
10:00PM	4	0	0	0	
15	5	0	0	1	
.30	1	0	0	0	
:45 TOTALS	16	1	-01	1	1
TOTALS	1				
11:00PM	1	0	0	0	
15	2	0	3	0	
30	3	0	0	0	
:45	2	0	0	0	
	8	01	0	. 0	

24HR					
TOTALS	1421	7	5	303	1736

AZS

3725

A-76

A77

A78

A79

A80

A-81

A-82

A83

APPENDIX B

Excerpts from the *Public Facilities Element*Excerpts from the *County Guidelines for Determining Significance*Excerpts from Caltrans' *Guide for the Preparation of Traffic Impact*Studies

,
•
·

Excerpts from the *Public Facilities Element*

..

Part XII Public Facility Element

San Diego County General Plan

Adopted March 13, 1991 GPA 90-FE Amended June 10, 1992 GPA92-FE1

section 1 - Introduction	XII-1-1
Section 2 - Coordination Among Facility	
Planning, Financing Programs a	nd ·
Land Use Planning	XII-2-1
Section 3 - Parks and Recreation	XII-3-1
Section 4 - Transportation	XII-4-1
Section 5 - Flood Control	XII-5-1
Section 6 - Solid Waste	XII-ć-1
Section 7 - Law Enforcement	XII-7-1
Section 8 - Animal Control	XII-8-1
Section 9 - Libraries	XII-9-1
26CHOLLIO - 2CUQOR	XII-10-1
Section 11 - Fire Protection and	
Emergency Services	XII-11-1
Section 12 - Wastewater	XII-12-1
Section 13 - Water Provision Systems	XII-13-1
Section 14 - Child Care	XII-14-1
Section 15 - Courts and Jails	XII-15-1
Section 16 - Social Services	XII-16-1
Section 17 - Health	XII-17-1
Section 18 - Senior Services	XII- 18-1
Section 19 - County Administration	XII-19-1
Section 20 - Equilities Located in City Sangrae	YII 20 1

This Element was partially funded through the Community Development Block Grant program

ISSUES

1. Increases in the amount of automobile use have resulted in increased congestion on the region's roadways.

Discussion: The dramatic rise in automobile use has far surpassed the ability of the County and other jurisdictions to upgrade and maintain the highway and road system. As the number of vehicles on the roadways has increased, the expansion of existing roadways and the construction of new roadways has not kept pace. Between 1978 and 1988, automobile registrations increased by 64% while increases in local street and road mileage only rose by 16%. As a result, certain roadways are functioning at a Level of Service "E" or "F" on a routine basis.

A LOS "C", which allows for stable traffic flow with room to maneuver, is a generally accepted level to strive for in new development. At this level, traffic generally flows smoothly, although freedom to maneuver within the roadway is somewhat restricted and lane changes require additional care.

However, there are some cases where development cannot achieve a LOS "C" on off-site roadways. For instance, there are areas where the existing development pattern precludes the addition of lanes or other mitigation or when the community is opposed to certain improvements to maintain a LOS "C". Additionally, there are existing roadways in the County that are currently operating below a LOS "C". Such cases are currently exceptions and generally occur when there is insufficient right-of-way to expand or modify a roadway or when the existing development in the area has generated more traffic than anticipated. In these cases a Level of Service "D" is acceptable on off-site roadways. At this level, small increases in flow cause substantial deterioration in service. Freedom to maneuver is limited and minor incidents can cause substantial interruption in the traffic flow:

When the roadway system reaches a LOS "E" or "F", or new development would push it to LOS "E" or "F", new development should not be approved unless the project can mitigate the LOS "E" or contribute a fair share to a program to mitigate the project's impacts, unless a statement of overriding findings can be made.

In order to control the amount of traffic on the roadways, and subsequently the amount of congestion, it is necessary to apply the LOS measurement to all roads that are impacted by a proposed project. The effect of a project on the road system varies from project to project. Due to the size and type of project, the type and capacity of roads serving the project, the amount of traffic generated by the development and the existing development pattern, the impact will vary from one project to another. To apply a LOS standard to only major or larger capacity roads or to within a specified geographic distance of a project could result in an inadequate review of the impacts of a project and create the potential for increased congestion. Therefore, project impacts should be assessed on a case-by-case basis.

GOALS, OBJECTIVES, POLICIES AND IMPLEMENTATION MEASURES

GOAL

A SAFE, CONVENIENT, AND ECONOMICAL INTEGRATED TRANSPORTATION SYSTEM INCLUDING A WIDE RANGE OF TRANSPORTATION MODES.

OBJECTIVE 1:

A Level of Service "C" or better on County Circulation Element roads.

Policy 1.1: New development shall provide needed roadway expansion and improvements on-site to meet the demand created by the development, and to maintain a Level of Service "C" on Circulation Element Roads during peak traffic hours. New development shall provide off-site improvements designed to contribute to the overall achievement of a Level of Service "D" on Circulation Element Roads.

Implementation Measure 1.1.1: Review all development proposals to determine both their short-term and long-term impacts on the roadway system. The area of impact will be determined based on the size, type and location of the project; the traffic generated by the project; and the existing circulation and development pattern in the area. [DPW, DPLU]

Implementation Measure 1.1.2: Require, as a condition of approval of discretionary projects, improvements or other measures necessary to mitigate traffic impacts to avoid reduction in the existing Level of Service below "C" on on-site Circulation Element roads. [DPLU, DPW]

Implementation Measure 1.1.3: Require, as a condition of approval of discretionary projects which have a significant impact on roadways, improvements or other measures necessary to mitigate traffic impacts to avoid reduction in the existing Level of Service below "D" on off-site and on-site abutting Circulation Element roads. New development that would significantly impact congestion on roads at LOS "E" or "F", either currently or as a result of the project, will be denied unless improvements are scheduled to increase the LOS to "D" or better or appropriate mitigation is provided. Appropriate mitigation would include a fair share contribution in the form of road improvements or a fair share contribution to an established program or project. If impacts cannot be mitigated, the project will be denied unless a specific statement of overriding findings is made pursuant to Section 15091(b) and 15093 of the State CEQA Guidelines. [DPLU, DPW]

<u>Implementation Measure I.1.4</u>: Whenever possible on development proposals, require that access to parcels adjacent to roads shown on the Circulation Element be limited to side streets in order to maintain through traffic flow. [DPW, DPLU]

Excerpts from the County's Guidelines for Determining Significance

	•		
		•	
		,	
•			
			•
	• • •		
	•		
	•	•	•
•			

Part XV-A

Transportation/Traffic

Traffic

County of San Diego

Guidelines for Determining Significance

Adopted

•	
	• • • • • • • • • • • • • • • • • • • •
	·
	•
•	•
•	
	•

2.3 Regional and Local Traffic Impact Analysis Guidelines

San Diego Traffic Engineers' Council (SANTEC) and the Institute of Traffic Engineers (ITE)

The San Diego Traffic Engineers' Council (SANTEC) and the local chapter of the Institute of Traffic Engineers (ITE) have endorsed for use the "Guidelines of Traffic Impact Studies (TIS) in the San Diego Region." These guidelines were prepared by a traffic subcommittee formed by SANDAG. The purpose of the subcommittee was to develop a model set of guidelines for the analysis of traffic impacts for adoption and use by the various jurisdictions in the San Diego region. The goal was to foster more consistency in the assessment of traffic impacts in the San Diego region. These guidelines establish a LOS target of LOS D. Impacts would be identified for those projects that significantly increase the volume and or delay at intersections and road segments operating below LOS D (i.e. at LOS E of LOS F) either prior to or as a result of the proposed project. These guidelines have not been formally adopted by SANDAG or local jurisdictions, but are currently being used as a guideline by many local trafficengineering consultants in the preparation of traffic impact studies in the San Diego Region.

California Department of Transportation (Caltrans)

The California Department of Transportation (Caltrans) has prepared a "Guide for the Preparation of Traffic Impact Studies." Objectives for the preparation of this guide include providing consistency and uniformity in the identification of traffic impacts generated by local land use proposals. In terms of level of service, "Caltrans endeavors to maintain a target LOS at the C/D cusp on State highway facilities. However, Caltrans acknowledges that this may not always be feasible. In these circumstances, Caltrans may consider setting the target LOS at the D/E cusp."

City of San Diego

The City of San Diego has prepared a "Traffic Impact Study Manual." The purpose is to provide guidelines to consultants on how to prepare traffic impact studies in the City of San Diego and to ensure consistency on the preparation of these studies. Impacts are identified if the proposed project will increase the traffic volume on a road segment above an identified allowable increase. The better the initial level of service on the road segment, the higher the allowable volume increase.

3.0 TYPICAL ADVERSE EFFECTS

Typical traffic related impacts are most often associated with traffic congestion on local roads and the regional circulation network. As the San Diego region grows, the number of vehicle trips that are generated by residents also grows. Historically, vehicle trips have been increasing at a faster rate than that of the population growth. It is forecasted that more than 23 million vehicle trips would be made in this region each weekday by the year 2020. The automobile is expected to remain the primary method of travel in the region, but new and widened freeways, increased trolley and bus service, better rail service, and additional highway improvements would alleviate some of the traffic

congestion. SANDAG's 2020 RTP details some of the regional improvements that are projected to occur within a twenty-year time frame. Impacts associated with traffic, pedestrian and bicycle safety are most often addressed at the project level.

4.0 GUIDELINES FOR DETERMINING SIGNIFICANCE

This section provides guidance for evaluating adverse environmental effects a project may have on traffic. The guidelines for determining significance are organized into six subject areas: direct vs. cumulative, road segments, intersections, ramps, hazards due to a design feature, and hazards to pedestrians and/or bicyclists.

4.1 Direct vs. Cumulative Impacts

The California Environmental Quality Act (CEQA) Guidelines states that environmental assessments must take in account the "whole of the action" involved, including on-site, off-site, construction, and operational impacts. Also, the environmental assessment must evaluate project-level and cumulative impacts, including direct and indirect impacts.

4.1.1 Direct

Direct impacts are impacts that would result solely from the implementation of the project. Since CEQA requires a plan to ground assessment, direct impacts are typically evaluated based upon a comparison of the existing plus project scenario to the existing scenario. When opening day and/or a phased scenario is planned, additional comparisons may also be made to determine significance. Where it can be demonstrated that other projects will reasonably come on-line prior to development of the proposed project, an opening day assessment scenario may be used in lieu of the existing plus project approach. Coordination with County staff is recommended to ensure that proper assumptions are used in the preparation of this assessment scenario. Direct impacts would occur when the significance criteria outlined herein is exceeded.

4.1.2 Cumulative

CEQA section 15130 provides guidance for assessment of cumulative impacts. Per this section, CEQA states that cumulative impact assessments should be based upon 1) a list of past, present and probable future projects producing related or cumulative impacts, (includes all projects and if necessary, those projects outside the control of the agency), or 2) a summary of projects contained in an adopted general plan or related planning document, or in a prior certified/adopted environmental document which described or evaluated regional or area wide conditions contributing to the cumulative impact. For most projects, the list of past, present and probable projects approach is used for the assessment of cumulative impacts.

For projects that will be implemented and constructed in the near term, the "list of projects" approach is typically used in the assessment and evaluation of cumulative impacts. The assessment of cumulative projects can also be based upon a summary of projections contained within an adopted General Plan or related planning documents. This is typically used when the project includes a change to the County's General Plan or Zoning Ordinance. Projects that include both a change to near term development and the County's General Plan or Zoning may be required to provide both levels of evaluation.

Section 15130(a) of the State CEQA Guidelines state that cumulative impacts of a project should be discussed when the project impacts, even though individually limited, are cumulatively considerable. Cumulatively considerable means that the incremental effects of an individual project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects. In evaluating cumulative traffic impacts two conditions must be evaluated: 1) will build-out of all near term projects result in a cumulative traffic impact and 2) does the amount of traffic generated by the individual proposed project contribute (even in a small part) to that cumulative impact. Both conditions must be met for an individual project to result in a cumulative traffic impact.

Cumulative traffic impacts are typically evaluated based upon a comparison of the near-term cumulative projects plus proposed project scenario (list of projects) to the existing scenario. If the traffic generated and/or redistributed from all the near term projects would result in a cumulative traffic impact then condition one is met. Condition two is evaluated based upon the traffic generated or redistributed by the proposed project and the list of projects onto a particular road segment and/or intersection. If the total amount of traffic generated and/or redistributed exceeds the values provided in Table 1, then the traffic would be considered cumulatively considerable and the individually proposed project would result in a cumulative traffic impact.

4.2 Road Segments

Exceedance of the following significance guidelines will be considered substantial evidence that private development and public improvement projects will have a significant traffic volume and/or level of service traffic impact on a road segment if:

- The additional or redistributed ADT generated by the proposed project will cause an adjacent or nearby County Circulation Element Road to operate below LOS D and will significantly increase congestion as identified in Table 1, and/or
- The additional or redistributed ADT generated by the proposed project will cause a residential street to exceed its design capacity, and/or

 The additional or redistributed ADT generated by the proposed project will significantly increase congestion on a Circulation Element Road, State Highway or intersection currently operating at LOS E or LOS F as identified in Table 1.

Table 1 Measures of Significant Project Impacts to Congestion Allowable Increases on Congested Roads and Intersections

Road Segments

	1100	a cegment	
	I 2-LANE ROAD	4-LANE ROAD	6-LANE ROAD
LOS E	200 ADT	400 ADT	600 ADT
LOS F	100 ADT	200 ADT	300 ADT

Intersections

	SIGNALIZED	UNSIGNALIZED
LOS E	Delay of 2 seconds	20 peak hour trips on a
<u></u>	<u> </u>	critical movement
•		5 peak hour trips on a
LOS F	5 peak hour trips on a	critical movement
	I critical movement	

Note: A critical movement is one that is experiencing excessive queues.

Note: By adding proposed project trips to all other trips from a list of projects, these same tables are used to determine if total cumulative impacts are significant. If cumulative impacts are found to be significant, each project that contributes any trips must mitigate a share of the cumulative impacts. Note: The County may also determine impacts have occurred on roads even when a project's traffic or cumulative impacts do not trigger an unacceptable level of service, when such traffic uses a significant amount of remaining road capacity.

The County of San Diego Public Road Standards include a table which establishes levels of service for County Circulation Element roads based upon average daily trips. This table shall be used in determining the level of service for County Circulation Element roads. The Highway Capacity Manual (HCM) includes analysis criteria for the assessment of the level of service for two-lane highways. The Director of Public Works may, based upon a review of the operational characteristics of the roadway, designate that a HCM analysis be used to determine the level of service for a two-lane County arterial in lieu of the level of service table provided in the County of San Diego Public Road Standards.

In determining the level of service for road segments and intersections outside of the County of San Diego's jurisdiction, the level of service standards for the jurisdiction or agency (Caltrans) shall be used. Early coordination with the affected jurisdiction and/or agency (Caltrans) should be conducted during the preparation of the traffic impact study.

Capacity is related to level of service. The capacity of a facility is the maximum number of persons or vehicles that can be expected to traverse a point or uniform section of road within a specified time frame under prevailing roadway, traffic and control conditions. The LOS E/LOS F threshold is identified as the capacity of the facility (roadway or intersection). Volume to capacity ratios are calculated based upon this capacity (LOS E/LOS F) threshold.

Levels of service are not applied to residential streets since their primary purpose is to serve abutting lots and not to carry through traffic. Congestion from the driver's perspective is typically not a concern. Compatibility of the traffic volumes on the local street in relation to the adjacent uses, however, may be an issue of concern. Recommended design capacities for residential non-Circulation Element streets are provided in the San Diego County Public Road Standards. For projects that will substantially increase traffic volumes on residential streets, a comparison of the traffic volumes on the residential streets with the recommended design capacity shall be provided.

The impact significance guidelines for road segments provided in Table 1 are based upon a general assessment and average conditions. These guidelines are based upon an assumed allowable 200 average daily trip (ADT) threshold per vehicle lane. Conservatively under worse case assumption this would be applied unidirectionally (project traffic only being assigned to one-side of the road). Using SANDAG's "Brief Guide for Vehicular Traffic Generation Rates for the San Diego Region" for most discretionary projects this would convert to less than 25 AM or PM peak hour trips. On average, during peak hour conditions, this would be only one additional car every 2.4 minutes. The addition of 200 ADT would, in most cases, not be noticeable to the average driver. Under extremely congested LOS F conditions, small changes and disruptions to the traffic flow can significantly affect traffic operations. Additional project traffic could increase the likelihood and/or frequency of these events. The allowable LOS F ADT threshold was, therefore, set at 50% of the LOS E threshold to provide a higher level of assurance that the traffic allowed under the threshold would not significantly impact traffic operation on the road segment.

For smaller discretionary projects, without controversy, the use of these guidelines is likely to be sufficient. For large projects, controversial projects and/or projects which are preparing Environmental Impact Reports, more detailed evaluations to verify the applicability of the significance thresholds for the individual project conditions may be necessary. Additional evaluations may include analysis of vehicle headways, speeds, average gaps, queues, delay, and/or other factors.

Projects that must prepare a CMP analysis, should also follow the CMP and SANTEC/ITE traffic impact analysis guidelines. A summary of these guidelines is provided in Table 2.

Table 2

Measure of Significant Project Traffic Impacts for Circulation Element Roads, Signalized Intersections, and Ramps

		Allowable Change due to Project Impact						
Level of Service With	Fre	eways	Roadway Segments*		Intersections**	Ramps***	Ramps with >15 min. delay	
Project	VIC	Speed (mph)	V/C	Speed (mph)	Delay (sec.)	Delay (min.)	Delay (min.)	
E&F	0.01	1	0.02	1	2	-	2	

- * For County arterials which are not identified in SANDAG's Regional Transportation Plan and Congestion Management Plan as regionally significant arterials, then significance may be measured based upon an increase in average daily traffic. The allowable change (ADT) due to project impacts in this instance would be identified in Table 1.
- ** Signalized intersections
- See Attachment E for ramp metering analysis.

KEY

V/C = Volume to Capacity ratio

Speed = Speed measured in miles per hour

Delay = Average stopped delay per vehicle measured in seconds, or

minutes

LOS = Level of Service ADT = Average Daily Trips

4.3 Intersections

This section provides guidance for evaluating adverse environmental effects a project may have on signalized and unsignalized intersections.

4.3.1 Signalized

Exceedance of the following significance guidelines will be considered substantial evidence that private development and public improvement projects will have a significant volume and/or level of service traffic impact on a signalized intersection if:

 The additional or redistributed ADT generated by the proposed project will cause a signalized intersection to operate below LOS D and will significantly increase congestion as identified in Table 1, and/or The additional or redistributed ADT generated by the proposed project will significantly increase congestion on a signalized intersection currently operating at LOS E or LOS F as identified in Table 1.

Significance criteria for signalized intersections identified in Table 1 allows an increase in the overall delay at an intersection operating at LOS E of two seconds. An increased wait time of two seconds, on average, would not be noticeable to the average driver. For LOS F conditions, however, a guideline based upon the number of trips added to a critical movement was used. This threshold directly relates to the number of vehicles that can be added to an existing queue that forms at the intersection. A threshold of five trips (peak hour) per critical movement was used. The five trips spread out over the peak hour would not significantly increase the length of an existing queue and would not be noticeable to the average driver.

For smaller discretionary projects, without controversy, the use of these guidelines is likely to be sufficient. For large projects, controversial projects and/or projects which are preparing Environmental Impact Reports, more detailed evaluations to verify the applicability of the significance thresholds for the individual project conditions may be necessary. Additional evaluations may include analysis of vehicle headways, speeds, average gaps, queues, delay, and/or other factors.

4.3.2 Unsignalized

The operating parameters and conditions for unsignalized intersections differ dramatically from those of signalized intersections. Very small volume increases on one leg or turn/thru movement of an unsignalized intersection can substantially affect the calculated delay for the entire intersection. Significance criteria for unsignalized intersections was based upon a minimum overall number of trips added to a critical movement (such as a left turn lane estimated to operate at LOS E of LOS F) at an unsignalized intersection.

Exceedance of the following significance guidelines will be considered substantial evidence that private development and public improvement projects will have a significant volume and/or level of service traffic impact on a unsignalized intersection if:

- The proposed project will generate 20 or more peak hour trips to a critical movement of an unsignalized intersection, and cause the unsignalized intersection to operate below LOS D, or
- The proposed project will generate 20 or more peak hour trips to a critical movement of an unsignalized intersection and the unsignalized intersection currently operates at LOS E, or

- The proposed project will generate 5 or more peak hour trips to a critical movement of an unsignalized intersection, and cause the unsignalized intersection to operate below LOS E, or
- The proposed project will generate 5 or more peak hour trips to a critical movement of an unsignalized intersection and the unsignalized intersection currently operates at LOS F, or
- Based upon an evaluation of existing accident rates, the signal priority list, intersection geometrics, proximity of adjacent driveways, sight distance and/or other factors, it is found that the generation rate less than those specified above would significantly impact the operations of the intersection.

The significance guidelines for unsignalized intersections set a minimum overall number of trips added to a critical movement at an unsignalized intersection and are supported by significance criteria for unsignalized intersections that are also identified in Table 1. Since the operations of unsignalized intersections under congested conditions are heavily influenced by traffic volume increases on critical moves, the significance guidelines for unsignalized intersections were based upon the number of trips added to a critical move. As stated above, this guideline directly relates to the number of vehicles that can be added to an existing queue that forms at the intersection. A significance guideline of twenty trips (peak hour) per critical movement was used for LOS E conditions. Although delays drivers experience under LOS E condition may be extreme, they are not yet considered unacceptable. The twenty trips spread out over the peak hour would not likely cause the intersection delay and/or existing queue lengths to become unacceptable. The twenty trips (peak hour) would not be noticeable to the average driver. A significance guideline of five trips (peak hour) per critical movement was used for LOS F conditions. The five trips spread out over the peak hour would not significantly increase the length of an existing queue and would not be noticeable to the average driver

A peak hour increase of twenty peak hour trips to the critical movement of an unsignalized intersection would be, on average, one additional car every 3.0 minutes. Assuming the average wait time for a vehicle in the critical movement queue is less than 3.0 minutes, this would not be noticeable to the average driver.

For smaller discretionary projects, without controversy, use of these guidelines is likely to be sufficient. For large projects, controversial projects, and/or projects which are preparing Environmental Impact Reports, more detailed evaluations to verify the applicability of the significance guidelines for the individual project conditions may be necessary. Additional evaluations may include analysis of vehicle headways, speeds, average gaps, queues, delay, and/or other factors.

4.4 Ramps

Additional or redistributed ADT generated by the proposed project will significantly increase congestion at a freeway ramp. Table 2 may be used as a guide in determining significant increases in congestion on ramps. Since the analysis of delays at ramps is still in its infancy these values should not be considered as absolutes. Factors affecting these values may include ramp metering, location (rural vs. urban), ramp design, and the proximity of adjacent intersections. Coordination with Caltrans and the local jurisdiction should be conducted to determine appropriate impact criteria for the specific ramps being assessed.

4.5 Hazards Due to a Design Feature

The following significance guidelines will be considered substantial evidence that a proposed project will have a significant traffic hazard impact due to a design feature. The determination of significance shall be on a case-by-case basis, considering the following factors:

- Design features/physical configurations of access roads adversely affect the safe transport of vehicles along the roadway.
- The percentage and/or magnitude of increased traffic on the road due to the proposed project affect the safety of the roadway.
- The physical conditions of the project site and surrounding area, such as curves, slopes, walls, landscaping or other barriers that could result in vehicle conflicts with other vehicles and/or stationary objects.
- The project does not conform to the requirements of the private or public road standards, as applicable.

4.6 Hazards to Pedestrians and/or Bicyclists

The following significance guidelines will be considered substantial evidence that a proposed project will have a significant traffic hazard impact to pedestrians and/or bicyclists. The determination of significance shall be on a case-by-case basis, considering the following factors:

- Design features/physical configurations adversely affect the visibility of pedestrians and/or bicyclists to drivers entering and exiting the site, and the visibility of cars to pedestrians and bicyclists.
- The amount of pedestrian activity at the project access points may adversely affect pedestrian safety.

- Time project may result in the preclusion or substantial hindrance of the provision of a planned bike lane or pedestrian facility on a roadway adjacent to the project site.
- The percentage and/or magnitude of increased traffic on the road due to the proposed project may adversely affect pedestrian and bicycle safety.
- The physical conditions of the project site and surrounding area, such as curves, slopes, walls, landscaping or other barriers could result in vehicle/pedestrian, vehicle/bicycle conflicts.
- The project does not conform to the requirements of the private or public road standards, as applicable.
- The project may result in a substantial increase in pedestrian or bicycle activity without the presence of adequate facilities.

5.0 GUIDELINES FOR PREPARING A TRAFFIC IMPACT STUDY (TIS)

A thorough traffic analysis will consider all aspects of a project (including all on- and offsite improvements). The analysis should identify whether these impacts are direct, indirect and/or cumulative in nature and determine whether the impacts are significant.

5.1 Overview of a Traffic Impact Study and General Contents

The purpose of a traffic impact study is to evaluate potential individual and cumulative traffic impacts that may result from a proposed project. Substantial increases in traffic volumes on and/or changes to the road network may cause congestion at existing and /or future roads and intersections. A detailed analysis of the traffic generated and/or redirected by a proposed project, assessment of potential impacts, and identification of mitigation measures for significant traffic impacts are the main focus of a traffic impact study.

The analysis of traffic issues, evaluation of traffic impacts, and development of mitigation measures for traffic impacts are complex tasks. The type and scope of a traffic impact study will vary based upon the size of a project, its location and other factors. Typically, a traffic impact study will include several components as outlined in Attachment B and summarized below:

5.1.1 Existing Conditions

Formatted: Bullets and Numbering

Documentation of the existing traffic volumes, levels of service, and geometrics for roads and intersections that may be potentially impacted by the proposed project must be provided. This assessment is typically based upon traffic counts that are less than two years old, unless it has been demonstrated that traffic volumes have not significantly changed since the prior counts were taken.

Excerpts from Caltrans Guide for the Preparation of Traffic Impact Studies

GUIDE FOR THE PREPARATION

OF

TRAFFIC IMPACT STUDIES

STATE OF CALIFORNIA
DEPARTMENT OF TRANSPORTATION

January 2001

PREFACE

The California Department of Transportation (Caltrans) has developed this "Guide for the Preparation of Traffic Impact Studies" in response to a survey of cities and counties in California. The purpose of that survey was to improve the Caltrans local development review process (also known as the Intergovernmental Review/California Environmental Quality Act or IGR/CEQA process). The survey indicated that approximately 30 percent of the respondents were not aware of what Caltrans required in a traffic impact study (TIS).

In the early 1990s, the Caltrans District 6 office located in Fresno identified a need to provide better quality and consistency in the analysis of traffic impacts generated by local development and land use change proposals that effect State highway facilities. At that time District 6 brought together both public and private sector expertise to develop a traffic impact study guide. The District 6 guide has proven to be successful at promoting consistency and uniformity in the identification and analysis of traffic impacts generated by local development and land use changes.

The guide developed in Fresno was adapted for statewide use by a team of Headquarters and district staff. The guide will provide consistent guidance for Caltrans staff who review local development and land use change proposals as well as inform local agencies of the information needed for Caltrans to analyze the traffic impacts to State highway facilities. The guide will also benefit local agencies and the development community by providing more expeditious review of local development proposals.

Even though sound planning and engineering practices were used to adapt the Fresno TIS guide, it is anticipated that changes will occur over time as new technologies and more efficient practices become available. To facilitate these changes, Caltrans encourages all those who use this guide to contact their nearest district office (i.e., IGR/CEOA Coordinators) to coordinate any changes with the development team.

ACKNOWLEDGEMENTS

The District 6 traffic impact study guide provided the impetus and a starting point for developing the statewide guide. Special thanks is given to Marc Birnbaum for recognizing the need for a TIS guide and for his valued experience and vast knowledge of land use planning to significantly enhance the effort to adapt the District 6 guide for statewide use. Randy Treece from District 6 provided many hours of coordination, research and development of the original guide and should be commended for his diligent efforts. Sharri Bender Ehlert of District 6 provided much of the technical expertise in the adaptation of the District 6 guide and her efforts are greatly appreciated.

A special thanks is also given to all those Cities, Counties, Regional Agencies. Congestion Management Agencies, Consultants, and Caltrans Employees who reviewed the guide and provided input during the development of this Guide for the Preparation of Traffic Impact Studies.

TABLE OF CONTENTS

	<u>Contents</u>	Page Number
PR	EFACE and ACKNOWLEDGEMENTS	ii ·
Ι.	INTRODUCTION	1
II.	WHEN A TRAFFIC IMPACT STUDY IS NEEDED	1
	 A. Trip Generation Thresholds B. Exceptions C. Updating An Existing Traffic Impact Study 	2
III.	SCOPE OF TRAFFIC IMPACT STUDY	2
	A. Boundaries of the Traffic Impact StudyB. Traffic Analysis Scenarios	2 2
IV.	TRAFFIC DATA	4
	 A. Trip Generation B. Traffic Counts C. Peak Hours D. Travel Forecasting (Transportation Modeling) 	4 4 4 5
V.	TRAFFIC IMPACT ANALYSIS METHODOLOGIES	5
	 A. Freeway Sections B. Weaving Areas C. Ramps and Ramp Junctions D. Multi-lane Rural and Urban Highways E. Two-lane Highways F. Signalized Intersections G. Unsignalized Intersections H. Transit Capacity I. Pedestrians J. Bicycles K. Caltrans Criteria/Warrants L. Channelization 	5 5 5 5 5 5 5 5 5
VI.	MITIGATION MEASURES	6 .
Apper	ndix "A" Minimum Contents of Traffic Impact Study ndix "B" Methodology for Calculating Equitable Mitigation Measures ndix "C" Measures of Effectiveness by Facility Type	

I. INTRODUCTION

Caltrans desires to provide a safe and efficient State transportation system for the citizens of California pursuant to various Sections of the California Streets and Highway Code. This is done in partnership with local and regional agencies through procedures established by the California Environmental Quality Act (CEQA) and other land use planning processes. The intent of this guide is to provide a starting point and a consistent basis in which Caltrans evaluates traffic impacts to State highway facilities. The applicability of this guide for local streets and roads (non-State highways) is at the discretion of the effected jurisdiction.

Caltrans reviews federal, state, and local agency development projects¹, and land use change proposals for their potential impact to State highway facilities. The primary objectives of this guide is to provide:

- guidance in determining if and when a traffic impact study (TIS) is needed,
- consistency and uniformity in the identification of traffic impacts generated by local land use proposals,
- consistency and equity in the identification of measures to mitigate the traffic impacts generated by land use proposals,
- lead agency² officials with the information necessary to make informed decisions regarding the existing and proposed transportation infrastructure (see Appendix A, Minimum Contents of a TIS)
- TIS requirements early in the planning phase of a project (i.e., initial study, notice of preparation, or earlier) to eliminate potential delays later,
- a quality TIS by agreeing to the assumptions, data requirements, study scenarios, and analysis methodologies in advance of beginning the study, and
- early coordination during the planning phases of a project to reduce the time and cost of preparing a TIS.

II. WHEN A TRAFFIC IMPACT STUDY IS NEEDED

The level of service³ (LOS) for operating State highway facilities is based upon measures of effectiveness (MOEs). These MOEs (see Appendix "C-2") describe the measures best suited for analyzing State highway facilities (i.e., freeway sections, signalized intersections, on- or off-ramps, etc.). Caltrans endeavors to maintain a target LOS at the transition between LOS "C" and LOS "D" (see Appendix "C-3") on State highway facilities, however, Caltrans acknowledges that this may not always be feasible and recommends that the lead agency consult with Caltrans to determine the appropriate target LOS. If an existing State highway facility is operating at less than the appropriate target LOS, the existing MOE should be maintained.

¹ "Project" refers to activities directly undertaken by government, financed by government, or requiring a permit or other approval from government as defined in Section 21065 of the Public Resources Code and Section 15378 of the California Code of Regulations.

² "Lead Agency" refers to the public agency that has the principal responsibility for carrying out or approving a project. Defined in Section 21165 of the Public Resources Code, the "California Environmental Quality Act, and Section 15367 of the California Code of Regulations.

¹ "Level of service" as defined in the latest edition of the Highway Capacity Manual, Special Report 209, Transportation Research Board, National Research Council.

A. Trip Generation Thresholds

The following criterion is a starting point in determining when a TIS is needed. When a project:

- 1. Generates over 100 peak hour trips assigned to a State highway facility
- 2. Generates 50 to 100 peak hour trips assigned to a State highway facility and, affected State highway facilities are experiencing noticeable delay; approaching unstable traffic flow conditions (LOS "C" or "D").
- 3. Generates 1 to 49 peak hour trips assigned to a State highway facility the following are examples that may require a full TIS or some lesser analysis⁴:
 - a. Affected State highway facilities experiencing significant delay; unstable or forced traffic flow conditions (LOS "E" or "F").
 - b. The potential risk for a traffic incident is significantly increased (i.e., congestion related collisions, non-standard sight distance considerations, increase in traffic conflict points, etc.).
 - c. Change in local circulation networks that impact a State highway facility (i.e., direct access to State highway facility, a non-standard highway geometric design, etc.).

Note: A traffic study may be as simple as providing a traffic count to as complex as a microscopic simulation. The appropriate level of study is determined by the particulars of a project, the prevailing highway conditions, and the forecasted traffic.

B. Exceptions

Exceptions require consultation between the lead agency, Caltrans, and those preparing the TIS. When a project's traffic impact to a State highway facility can clearly be anticipated without a study and all the parties involved (lead agency, developer, and the Caltrans district office) are able to negotiate appropriate mitigation, a TIS may not be necessary.

C. Updating An Existing Traffic Impact Study

A TIS requires updating when the amount or character of traffic is significantly different from an earlier study. Generally a TIS requires updating every two years. A TIS may require updating sooner in rapidly developing areas and not as often in slower developing areas. In these cases, consultation with Caltrans is strongly recommended.

III. SCOPE OF TRAFFIC IMPACT STUDY

Consultation between the lead agency, Caltrans, and those preparing the TIS is recommended before commencing work on the study to establish the appropriate scope. At a minimum, the TIS should include the following:

A. Boundaries of the Traffic Impact Study

All State highway facilities impacted in accordance with the criteria in Section II should be studied. Traffic impacts to local streets and roads can impact intersections with State highway facilities. In these cases, the TIS should include an analysis of adjacent local facilities, upstream and downstream, of the intersection (i.e., driveways, intersections, and interchanges) with the State highway.

A "lesser analysis" may include obtaining traffic counts, preparing signal warrants, or a focused TIS, etc.

B. Traffic Analysis Scenarios

Caltrans is interested in the effects of general plan updates and amendments as well as the effects of specific project entitlements (i.e., site plans, conditional use permits, subdivisions, rezoning, etc.) that have the potential to impact a State highway facility. The complexity or magnitude of the impacts of a project will normally dictate the scenarios necessary to analyze the project. Consultation between the lead agency, Caltrans, and those preparing the TIS is recommended to determine the appropriate scenarios for the analysis. The following scenarios should be addressed in the TIS when appropriate:

- 1. When only a general plan amendment or update is being sought, the following scenarios are required:
 - a) Existing Conditions Current year traffic volumes and peak hour LOS analysis of effected State highway facilities.
 - b) Proposed Project Only with Select Link⁵ Analysis Trip generation and assignment for build-out of general plan.
 - c) General Plan Build-out Only Trip assignment and peak hour LOS analysis. Include current land uses and other pending general plan amendments.
 - d) General Plan Build-out Plus Proposed Project Trip assignment and peak hour LOS analysis. Include proposed project and other pending general plan amendments.
- 2. When a general plan amendment is not proposed and a proposed project is seeking specific entitlements (i.e., site plans, conditional use permits, sub-division, rezoning, etc.), the following scenarios must be analyzed in the TIS:
 - a) Existing Conditions Current year traffic volumes and peak hour LOS analysis of effected State highway facilities.
 - b) <u>Proposed Project Only</u> Trip generation, distribution, and assignment in the year the project is anticipated to complete construction.
 - c) <u>Cumulative Conditions</u> (Existing Conditions Plus Other Approved and Pending Projects Without Proposed Project) Trip assignment and peak hour LOS analysis in the year the project is anticipated to complete construction.
 - d) <u>Cumulative Conditions Plus Proposed Project</u> (Existing Conditions Plus Other Approved and Pending Projects Plus Proposed Project) Trip assignment and peak hour LOS analysis in the year the project is anticipated to complete construction.
 - e) <u>Cumulative Conditions Plus Proposed Phases</u> (Interim Years) Trip assignment and peak hour LOS analysis in the years the project phases are anticipated to complete construction.
- 3. In cases where the circulation element of the general plan is not consistent with the land use element or the general plan is outdated and not representative of current or future forecasted conditions, all scenarios from Sections III. B. 1. and 2. should be utilized with the exception of duplicating of item 2.a.

3

⁵ "Select link" analysis represents a project only traffic model run, where the project's trips are distributed and assigned along the highway network. This procedure isolates the specific impact on the State highway network.

IV. TRAFFIC DATA

Prior to any fieldwork, consultation between the lead agency, Caltrans, and those preparing the TIS is recommended to reach consensus on the data and assumptions necessary for the study. The following elements are a starting point in that consideration.

A. Trip Generation

The latest edition of the Institute of Transportation Engineers' (ITE) <u>TRIP GENERATION</u> report should be used for trip generation forecasts. Local trip generation rates are also acceptable if appropriate validation is provided to support them.

- 1. <u>Trip Generation Rates</u> When the land use has a limited number of studies to support the trip generation rates or when the Coefficient of Determination (R²) is below 0.75, consultation between the lead agency, Caltrans and those preparing the TIS is recommended.
- 2. <u>Pass-by Trips</u>⁶ Pass-by trips are only considered for retail oriented development. Reductions greater than 15% requires consultation and acceptance by Caltrans. The justification for exceeding a 15% reduction should be discussed in the TIS.
- 3. <u>Captured Trips</u>⁷ Captured trip reductions greater than 5% requires consultation and acceptance by Caltrans. The justification for exceeding a 5% reduction should be discussed in the TIS.
- 4. <u>Transportation Demand Management (TDM)</u> Consultation between the lead agency and Caltrans is essential before applying trip reduction for TDM strategies.

NOTE: Reasonable reductions to trip generation rates are considered when adjacent State highway volumes are sufficient (at least 5000 ADT) to support reductions for the land use.

B. Traffic Counts

Prior to field traffic counts, consultation between the lead agency, Caltrans and those preparing the TIS is recommended to determine the level of detail (e.g., location, signal timing, travel speeds, turning movements, etc.) required at each traffic count site. All State highway facilities within the boundaries of the TIS should be considered. Common rules for counting vehicular traffic include but are not limited to:

- 1. Vehicle counts should be conducted on Tuesdays, Wednesdays, or Thursdays during weeks not containing a holiday and conducted in favorable weather conditions.
- 2. Vehicle counts should be conducted during the appropriate peak hours (see peak hour discussion below).
- 3. Seasonal and weekend variations in traffic should also be considered where appropriate (i.e., recreational routes, tourist attractions, harvest season, etc.).

C. Peak Hours

To eliminate unnecessary analysis, consultation between the lead agency, Caltrans and those preparing the TIS is recommended during the early planning stages of a project. In general, the TIS should include a morning (a.m.) and an evening (p.m.) peak hour analyses. Other peak hours (e.g., 11:30 a.m. to 1:30 p.m., weekend, holidays, etc.) may also be required to determine the significance of the traffic impacts generated by a project.

"Captured Trips" are trips that do not enter or leave the driveways of a project's boundary within a mixed-use development.

-

[&]quot;Pass-by" trips are made as intermediate stops between an origin and a primary trip destination (i.e., home to work, home to shopping, etc.).

D. Travel Forecasting (Transportation Modeling)

The local or regional traffic model should reflect the most current land use and planned improvements (i.e., where programming or funding is secured). When a general plan build-out model is not available, the closest forecast model year to build-out should be used. If a traffic model is not available, historical growth rates and current trends can be used to project future traffic volumes. The TIS should clearly describe any changes made in the model to accommodate the analysis of a proposed project.

V. TRAFFIC IMPACT ANALYSIS METHODOLOGIES

Typically, the traffic analysis methodologies for the facility types indicated below are used by Caltrans and will be accepted without prior consultation. When a State highway has saturated flows, the use of a micro-simulation model is encouraged for the analysis. Other analysis methods may be accepted, however, consultation between the lead agency, Caltrans and those preparing the TIS is recommended to agree on the information necessary for the analysis.

- A. Freeway Sections Highway Capacity Manual (HCM)* Chapter 3, operational analysis
- B. Weaving Areas Caltrans Highway Design Manual (HDM) Chapter 500
- C. Ramps and Ramp Junctions HCM* Chapter 5, operational analysis or Caltrans HDM Chapters 400 and 500, Caltrans Ramp Metering Guidelines (most recent edition)
- D. Multi-Lane Rural and Urban Highways HCM* Chapter 7, operational analysis
- E. Two-lane Highways HCM* Chapter 8, operational analysis
- F. Signalized Intersections⁸ HCM* Chapter 9, Highway Capacity Software**, operational analysis, TRAFFIXTM**, Synchro**, see footnote 8
- G. <u>Unsignalized Intersections</u> HCM* Chapter 10, operational analysis, Caltrans Traffic Manual for signal warrants if a signal is being considered
- H. Transit Capacity HCM* Chapter 12, operational analysis
- I. Pedestrians HCM* Chapter 13
- J. <u>Bicveles</u> HCM* Chapters 14, use operational analysis when applying Chapter 9 and 10 HCM methods to bicycle analysis
- K. <u>Caltrans Criteria/Warrants</u> Caltrans Traffic Manual (stop signs, traffic signals, freeway lighting, conventional highway lighting, school crossings)
- L. <u>Channelization</u> Caltrans guidelines for Reconstruction of Intersections, August 1985, Ichiro Fukutome
- *The most current edition of the Highway Capacity Manual, Special Report 209, Transportation Research Board, National Research Council, should be used.
- **NOTE: Caltrans does not officially advocate the use of any special software. However, consistency with the HCM is advocated in most but not all cases. The Caltrans local development review units utilize the software mentioned above. If different software or analytical techniques are used for the TIS then consultation between the lead agency, Caltrans and those preparing the TIS is recommended. Results that are significantly different than those produced with the analytical techniques above should be challenged.

25

^{*} The procedures in the Highway Capacity Manual "do not explicitly address operations of closely spaced signalized intersections. Under such conditions, several unique characteristics must be considered, including spill-back potential from the downstream intersection to the upstream intersection, effects of downstream queues on upstream saturation flow rate, and unusual platoon dispersion or compression between intersections. An example of such closely spaced operations is signalized ramp terminals at urban interchanges. Queue interactions between closely spaced intersections may seriously distort the procedures in" the HCM. Scope of Manual, page 1-2, Highway Capacity Manual, Special Report 209, updated December 1997.

VI. MITIGATION MEASURES

The TIS should provide the nexus [Nollan v. California Coastal Commission, 1987, 483 U.S. 825 (108 S.Ct. 314)] between a project and the traffic impacts to State highway facilities. The TIS should also establish the rough proportionality [Dolan v. City of Tigard, 1994, 512 U.S. 374 (114 S. Ct. 2309)] between the mitigation measures and the traffic impacts. One method for establishing the rough proportionality or a project proponent's equitable responsibility for a project's impacts is provided in Appendix "B." Consultation between the lead agency, Caltrans and those preparing the TIS is recommended to reach consensus on the mitigation measures and who will be responsible.

Mitigation measures must be included in the traffic impact analysis. This determines if a project's impacts can be eliminated or reduced to a level of insignificance. Eliminating or reducing impacts to a level of insignificance is the standard pursuant to CEQA and the National Environmental Policy Act (NEPA). The lead agency is responsible for administering the CEQA review process and has the principal authority for approving a local development proposal or land use change. Caltrans, as a responsible agency, is responsible for reviewing the TIS for errors and omissions that pertain to State highway facilities. The authority vested in the lead agency to administer the CEQA process does not take precedence over other authorities in law.

If the mitigation measures require work in the State highway right-of-way an encroachment permit from Caltrans will be required. This work will also be subject to Caltrans standards and specifications. Consultation between the lead agency, Caltrans and those preparing the TIS early in the planning process is strongly recommended to expedite the review of local development proposals and to reduce conflicts and misunderstandings in both the local agency CEQA review process as well as the Caltrans encroachment permit process.

MEASURES OF EFFECTIVENESS BY FACILITY TYPE

The state of the s		
TYPE OF FACILITY	MEASURE OF EFFECTIVENESS	
Freeways		
Basic Freeway Segments	Density (pc/mi/ln)	
Weaving Areas	Density (pc/mi/ln)	
Ramp Junctions	Flow Rates (pcph)	
Multi I and Highways	Density (pc/mi/ln)	
Multi-Lane Highways	Free-Flow Speed (mph)	
Two-Lane Highways	Time Delay (percent)	
Signalized Intersections	Average Control Delay (sec/veh)	
Unsignalized Intersections	Average Control Delay (sec/veh)	
Arterials	Average Travel Speed (mph)	
Transit	Load Factor	
Transit	(pers/seat, veh/hr, people/hr)	
Pedestrians	Space (sq. ft./ped)	

Measures of effectiveness for level of service definitions located in table 1-2, Chapter 1, of the 1997 Highway Capacity Manual, Special Report 209, Transportation Research Board, National Research Council.

		÷			·		
					•	•	
	·			•			
				·			
			٠.				
		•		;			
	•						
		•					
· .			·				
				· .			

APPENDIX C Cumulative Projects

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			SUMIN	IAR	Y OF CU	SUMMARY OF CUMULATIVE ADTS BY ZONE	E ADTs B	ZX	ONE		
Percent ADT 30% 1256 13 13 13 14 14 14 14 14	SR-76.	- West of			SR-7	'6 - 395 to	1-15		SR-76	SR-76 - 1-15 to Pankey	ankey
30% 1256 1 6% 313 1 8% 107 1 8% 107 1 6% 1 0 1% 110 0 1% 110 0 1% 110 0 1% 21 0 1% 21 0 1% 21 0 1% 21 0 1% 21 0 1% 21 0 1% 21 0 1% 21 0 1% 21 0 1% 21 0 1% 21 0 1% 20% 3280 20% 3280 20% 3280 20% 3280 20% 247 5% 241 0 5% 241 0 5% 241 0 5% 241 0 5% 241 0 5% 242 0 5% 241 0 5% 241 0 5% 242 0 5% 242 0 5% 243 0 5% 655 0 7% 292 0 7%	-	Percent	ADT	L.	Zone	Percent	ADT		Zone	Percent	ADT
6% 313 1 1 1 1 1 1 1 1	┝	30%	1256	<u> </u>	PP-A	20%	2093		PP-A	2%	209
8%	PP-B	%9	313	<u> </u>	PP-B	%9	313		PP-B	20%	2608
8% 107 106 107 106 107 108	PP-C	%8	437	<u></u>	PP-C	%8	437		PP-C	%09	3280
6%	D-dd	%8	107	Щ.	PP-D	%8	107		DP-D	30%	403
1% 285 V 1% 110 V 10% 218 V 22% 219 V 22% 247 V 22% 247 V 22% 87 V 22% 87 V 22% 87 V 22% 43 V V V 22% 43 V V V V V V C C	PP-E	%9		<u> </u>	PP-E	%9	1		PP-E	20%	2
1%	C-A-A	2%	285	<u> </u>	VC-A-A	7%	285		VC-A-A	2%	713
105	C-A-B	1%	41	<u>L.</u>	VC-A-B	1%	41		VC-A-B	7%	288
1% 110 V 0% 0 0 V 0% 0 0 V 0% 0 0 V 0% 0%	C-A-C	2%	105	<u> </u>	VC-A-C	2%	105		VC-A-C	%9	314
0% 0 V 2% 35 V 2% 218 V 2% 117 V 2% 117 V 1% 21 V Percent ADT V 5% 209 S 12% 403 V 20% 2 V 5% 713 V 6% 247 V 5% 261 V 4% 441 V 5% 8 V 5% 88 V 5% 6% 655 6% 655 V 5% 29 V <td>C-A-D</td> <td>1%</td> <td>110</td> <td><u> </u></td> <td>VC-A-D</td> <td>1%</td> <td>110</td> <td></td> <td>VC-A-D</td> <td>3%</td> <td>331</td>	C-A-D	1%	110	<u> </u>	VC-A-D	1%	110		VC-A-D	3%	331
2% 35 V 2% 218 V 2% 218 V 1% 21 V 1% 21 V Percent ADT 5% 209 60% 3280 60% 3280 60% 3280 60% 247 V 5% 241 V 6% 655 V 8 V 2% 441 V 5% 655 V 87 V 887 V 898 V 898 V 898 S 898 S	C-A-E	%0	0	<u> </u>	VC-A-E	%0	0		VC-A-E	2%	8
2% 218 V 29% 117 V V 117 V V V V V V V V V	.C-B-1	2%	35	<u> </u>	VC-B-1	2%	35		VC-B-1	5%	87
2% 117 V 1% 21 V 1% 21 V 1% 21 V - Pankey to Couser - Pankey to Couser 5% 209 12% 626 60% 3280 30% 403 20% 247 V 5% 713 V 5% 713 V 5% 713 V 5% 8 V 5% 87 V 5% 87 V 5% 6% 5% 655 V 5% 5% 5% 6% 5% 6% 5% 655 V 7% 7% 7% 7% 8% 7% 8% 7% 8% 8% 8% 8% 8% 8% 8% 8%	C-B-2	2%	218	<u></u>	VC-B-2	7%	218		VC-B-2	%9	655
1% 21 V TAL 3047 V Second 2009 V 12% 626 60% 3280 20% 247 V 5% 247 V 5% 261 V 5% 8 V 5% 87 V 5% 87 V 5% 87 V 5% 655 V 5% 655 V 5% 655 V 5% 655 V 5% 73 V 5% 87 V 5% 87 V 5% 88 V 5% 87 V 5% 88 V 5% 87 V 5% 87 V 5% 88 V	.C-B-3	2%	117	<u> </u>	VC-B-3	2%	117		VC-B-3	5%	292
OTAL 3047 5 - Pankey to Couser ADT 7 - Parcent ADT 5% 209 12% 626 60% 3280 30% 403 20% 2 8 713 9% 247 10 4% 10 4% 10 8 10 8 10 5% 10 6% 10 6% 10 6% 10 6% 10 6% 10 6% 10 6% 10 6% 10 6% 10 6% 10 6% 10 6% 10 6% 10 6% 10 6% 10 6% 10 6% 10 6% 10 6% <td>'C-B-4</td> <td>1%</td> <td>21</td> <td><u> </u></td> <td>VC-B-4</td> <td>1%</td> <td>21</td> <td></td> <td>VC-B-4</td> <td>2%</td> <td>43</td>	'C-B-4	1%	21	<u> </u>	VC-B-4	1%	21		VC-B-4	2%	43
- Pankey to Couser Percent ADT 5% 209 12% 626 60% 3280 20% 2 20% 2 247 V 6% 241 V 5% 87 V 5% 85% 2561 V 5% 87 V 5% 85% 2562 V 5% 87 V 5% 85% 2562 V 5% 87 V 5% 85% 25% 25% 25% 25% 25% 25% 25% 25% 25% 2	TOTA		3047	<u> </u>	TOI	AL	3884		TO	TOTAL	9232
- Pankey to Couser Percent ADT 5% 209 12% 626 626 626 626 60% 2 403 713 V 6% 247 V 5% 87 V 441 V 4% 441 V 4% 87 V 441 V 4% 87 V 6% 655 V 5% 655 V 5% 43 V 13 V 13 V 14 V											
Percent ADT Zone 5% 209 PP-A 12% 626 PP-B 60% 3280 PP-C 80% 403 PP-D 12% 2 PP-D 20% 2 PP-E 5% 713 VC-A-B 5% 247 VC-A-B 4% 441 VC-A-B 2% 8 VC-A-B 5% 87 VC-A-B 6% 655 VC-B-1 6% 655 VC-B-1 2% 43 VC-B-3	SR-76 - Pa	ankey to	Couser		SR-76-	Couser to	Project		SR-76	SR-76 - East of Project	roject
5% 209 PP-A 12% 626 PP-B 60% 3280 PP-C 30% 403 PP-D 20% 2 PP-E 5% 713 VC-A-A 6% 247 VC-A-B 5% 261 VC-A-C 4% 441 VC-A-B 2% 8 VC-A-E 5% 87 VC-B-1 6% 655 VC-B-1 6% 655 VC-B-3 7% 43 VC-B-4	Zone	Percent	ADT	<u> </u>	Zone	Percent	ADT		Zone	Percent	ADT
12% 626 PP-B 60% 3280 PP-C 30% 403 PP-D 20% 2 PP-E 5% 713 VC-A-A 6% 247 VC-A-B 5% 261 VC-A-C 4% 441 VC-A-D 2% 8 VC-A-E 5% 87 VC-B-1 6% 655 VC-B-1 5% 292 VC-B-3 2% 43 VC-B-4	PP-A	2%	209	-	PP-A	2%	509		PP-A	2%	209
60% 3280 PP-C 30% 403 PP-D 20% 2 PP-E 5% 713 VC-A-A 6% 247 VC-A-B 5% 261 VC-A-C 4% 441 VC-A-D 2% 8 VC-A-E 5% 87 VC-B-1 6% 655 VC-B-1 5% 292 VC-B-3 2% 43 VC-B-4	PP-B	12%	626	.	PP-B	12%	979		PP-B	12%	979
30% 403 PP-D 20% 2 PP-E 5% 713 VC-A-A 6% 247 VC-A-B 5% 261 VC-A-D 4% 441 VC-A-D 2% 8 VC-A-E 5% 87 VC-A-E 6% 655 VC-B-1 5% 292 VC-B-3 2% 43 VC-B-4	PP-C	%09	3280	<u></u>	PP-C	%09	3280		PP-C	%09	3280
20% 2 PP-E 5% 713 VC-A-A 6% 247 VC-A-B 5% 261 VC-A-C 4% 441 VC-A-D 2% 8 VC-A-E 5% 87 VC-B-1 6% 655 VC-B-1 5% 292 VC-B-3 2% 43 VC-B-4	PP-D	30%	403		PP-D	30%	403		PP-D	30%	403
5% 713 VC-A-A 6% 247 VC-A-B 5% 261 VC-A-C 4% 441 VC-A-D 2% 8 VC-A-E 5% 87 VC-B-1 6% 655 VC-B-1 5% 292 VC-B-3 2% 43 VC-B-4	PP-E	70%	2		PP-E	20%	2		PP-E	20%	2
6% 247 VC-A-B 5% 261 VC-A-C 4% 441 VC-A-D 2% 8 VC-A-E 5% 87 VC-B-1 6% 655 VC-B-1 5% 292 VC-B-3 2% 43 VC-B-4	C-A-A	2%	713		VC-A-A	2%	713		VC-A-A	5%	713
5% 261 VC-A-C 4% 441 VC-A-D 2% 8 VC-A-E 5% 87 VC-B-1 6% 655 VC-B-2 5% 292 VC-B-3 2% 43 VC-B-4	C-A-B	%9	247	يسيا	VC-A-B	%9	247		VC-A-B	%9	247
4% 441 VC-A-D 2% 8 VC-A-E 5% 87 VC-B-1 6% 655 VC-B-2 5% 292 VC-B-3 2% 43 VC-B-4	'C-A-C	2%	261	<u> </u>	VC-A-C	2%	261		VC-A-C	5%	261
2% 8 VC-A-E 5% 87 VC-B-1 6% 655 VC-B-2 5% 292 VC-B-3 2% 43 VC-B-4	C-A-D	4%	441	<u> </u>	VC-A-D	4%	441		VC-A-D	4%	441
5% 87 VC-B-1 6% 655 VC-B-2 5% 292 VC-B-3 2% 43 VC-B-4	C-A-E	2%	8	مصط	VC-A-E	%7	8		VC-A-E	2%	∞
6% 655 VC-B-2 5% 292 VC-B-3 2% 43 VC-B-4	/C-B-1	2%	87	-	VC-B-1	2%	28		VC-B-1	5%	87
292 VC-B-3 2% 43 VC-B-4	/C-B-2	%9	655		VC-B-2	%9	655		VC-B-2	%9	655
2% 43 VC-B-4	/C-B-3	%5	292	ليبيا	VC-B-3	2%	292		VC-B-3	5%	292
	/C-B-4	2%	43	·	VC-B-4	2%	43		VC-B-4	2%	43
OTAL 7	TOTA	L	7268	<u> </u>	TO	LAL	7268		TO	TOTAL	7268

	Pala/Pauma Cumulative Projects						
TAZ	MapID	PROJECT	LAND USE	DENSITY	TRIPS		
С	1	Pala Casino Expansion	Gaming/Hotel	70 ksf gaming+50 rm hotel	4950		
В	2	Rosemary Mtn Palomar Agg	Mining	Truck pce trips	60		
D	3	Calmat Pala Mine	Mining	(included in existing)	0		
В	4	Pipeline #6	Construction	Truck pce trips	140		
Α	5	Sycamore Ranch	Single Family	195 units+golf	2550		
A	6	I-15/SR-76 Gas Station	Fueling (12)	12 Stations	1800		
В	7	I-15/SR-76 Master SP	Comm/RV	(future only)	0		
В	8	Campus Park Specific Plan	School	750 Students	975		
В	9	Lake Rancho Viejo	Single Family	816 units	8160		
Α	10	Brooks Hills	Single Family	110 units	1110		
A	11	Dulin Ranch	SF+school	(future only)	0		
A	12	SR-76 Improvement Project	Construction	(future only)	0		
D	13	Pauma Valley Fruit Packing	Industrial	38,060 sq ft	240		
	† · · · · · · · · · · · · · · · · · · ·		1.C J	698 SFDU; 252 Sr Housing	24846		
В	14	Passerelle	Mixed	4 ac town ctr, 1500 ksf office			
В	15	Meadow Wood	Mixed Resident	517 SF; 727 MF	10566		
С	16	TPM 20485	Residential	3 Estates	36		
С	17	TPM 20725	Residential	4 Estates	48		
С	18	ZAP 03043	Residential	1 Estate	12		
С	19	ZAP 03056	Residential	1 Estate	12		
D	20	TM 5223	Residential	46 Estates	552		
D	21	TPM 20392	Residential	4 Estates	48		
D	22	TPM 20611	Residential	4 Estates	48		
С	23	TPM 20753	Residential	4 Estates	48		
D	24	TPM 20804	Residential	2 Estates	24		
D	25	MUP 63-162	Medical	3400 sq ft	68		
D	26	MUP 67-092	Campground	4 acres	16		
D	27	MUP 98-011	Residential	8 Estates	96		
D	28	MUP 99-011	Food Process	14,000 sq ft	70		
D	29	ZAP 94-010	Residential	1 Estate	12		
D	30	MUP 84-037	Church	25 trips	25		
D	31	MUP 92-003	Residential	1 Estate	12		
E	32	MUP 65-034	Residential	1 Estate	12		
С	33	TM 5321	Residential	36 units	360		
D	34	H1 Land Development	Residential	11 Estates	132		

	Pala/Pauma Cumulative Projects							
TAZ	MapID	PROJECT	LAND USE	DENSITY	TRIPS			
Α	5	Sycamore Ranch	Single Family	195 units (50% occ)	1275			
A	6	I-15/SR-76 Gas Station	Fueling (12)	1800 trips	1800			
Α	10	Brooks Hills	Single Family	110 units	1110			
A	11	Dulin Ranch	SF+school	(future only)	0			
A	12	SR-76 Improvement Project	Construction	(future only)	0			
				TOTAL ADT	4185			

PRA

	Pala/Pauma Cumulative Projects							
TAZ	MapID	PROJECT	LAND USE	DENSITY	TRIPS			
В	2	Rosemary Mtn Palomar Agg	Mining	Truck pce trips	60			
В	4	Pipeline #6	Construction	Truck pce trips	140			
В	7	I-15/SR-76 Master SP	Comm/RV	(future only)	0			
В	8	Campus Park Specific Plan	School	750 students	975			
В	9	Lake Rancho Viejo	Single Family	816 units (25% occupied)	2040			
В	15	Meadow Wood	Mixed Resident	517 SF; 727 MF (10% occupied)	1000			
В	14	Passerelle	Mixed	698 SFDU; 252 Sr Housing (5% occupied)	1000			
				TOTAL ADT	5215			

PAB

	Pala/Pauma Cumulative Projects							
TAZ	MapID	PROJECT	LAND USE	DENSITY	TRIPS			
С		Pala Casino Expansion	Gaming/Hotel	70 ksf gaming+50 rm hotel	4950			
С	16	TPM 20485	Residential	3 Estates	36			
С	17	TPM 20725	Residential	4 Estates	48			
С	18	ZAP 03043	Residential	1 Estate	12			
C	19	ZAP 03056	Residential	1 Estate	12			
C	23	TPM 20753	Residential	4 Estates	48			
C	33	TM 5321	Residential	36 units	360			
	<u> </u>			TOTAL ADT	5466			

PP.C

Pala/Pauma Cumulative Projects								
TAZ	MapID	PROJECT	LAND USE	DENSITY	TRIPS			
D	3	Calmat Pala Mine	Mining	(included in existing)	0			
D	13	Pauma Valley Fruit Packing	Industrial	38,060 sq ft	240			
D	20	TM 5223	Residential	46 Estates	552			
D	21	TPM 20392	Residential	4 Estates	48			
D	22	TPM 20611	Residential	4 Estates	48			
D	24	TPM 20804	Residential	2 Estates	24			
D	25	MUP 63-162	Medical	3400 sq ft	68			
D	26	MUP 67-092	Campground	4 acres	16			
D	27	MUP 98-011	Residential	8 Estates	96			
D	28	MUP 99-011	Food Process	14,000 sq ft	70			
D	29	ZAP 94-010	Residential	1 Estate	12			
D	30	MUP 84-037	Church	25 trips	25			
D	31	MUP 92-003	Residential	1 Estate	12			
D	34	H1 Land Development	Residential	11 Estates	132 1343			
TOTAL ADT								

PPD

Pala/Pauma Cumulative Projects								
TAZ	MapID	PROJECT	LAND USE	DENSITY	TRIPS			
E	32	MUP 65-034	Residential	1 Estate	12			
TOTAL ADT								

(VC-A-A)

VALLEY CTR UST A

VALLEY CTR
UST A
(VC-A-D)
(VC-A-E)

(ca)

VALLEY CENTER PROJECTS (LIST A)							
TAZ	Map	County #	Density	Unit	Rate	ADT	
В	1	TM-4793	36	SF	10	360	
С	2	TM-4944	11	SF	10	110	
D	3	TM-4957	19	SF	10	190	
В	4	TM-5001	18	SF	10_	180	
D	5	TM-5003	25	SF	10	250	
D	6	TM-5004	218	SF+golf	10	2780	
Α	7	TM-5014	22	SF	10	220	
С	8	TM-5028	12	SF	10	120	
D	10	TM-5047	149	SF	10	1490	
D	12	TM-5129	10	SF	10	100	
C	13	TM-5150	8	SF	10	80	
D	14	TM-5173	176	SF	10	1760	
Α	15	TM-5175	65	SF	10	650	
D	16	TM-5176	77.	SF	10	770	
D	17	TM-5177	57	SF	10	570	
В	18	TM-5211	48	SF	10	480	
С	19	TM-5212	5	Estate	12	60	
C	20	TM-5222	14	SF	10	140	
С	21	TM-5251	6	SF	10	60	
С	22	TM-5263	52	Estate	12	624	
C	23	TM-5272	11	SF	10	110	
С	24	TM-5273	7	SF	10	70	
С	25	TM-5301	2	Estate	12	24	
D	26	TM-5305	22	SF	10	220	
D	27	TM-5308	13	SF	10	130	
Α	28	TM-5359	9	Estate	12	108	
Α	29	TM-5385	365	SF	10	3650	
С	30	TM-5403	79	SF	10	790	
С	31	TPM-19397	5	Estate	12	60	
В	32	TPM-19952	2	Estate	12	24	
В	34	TPM-20239	5	Estate	12	60	
С	35	TPM-20343	4	Estate	12	48	
С	36	TPM-20352	4	Estate	12	48	
В	37	TPM-20360	4	Estate	12	48	
Е	38	TPM-20362	2	Estate	12	24	
С	39	TPM-20419	3	Estate	12	36	
D	40	TPM-20423	3	Estate	12	36	
C	41	TPM-20435	3	Estate	12	36	
С	42	TPM-20438	2	Estate	12	24	
В	43	TPM-20450	4	Estate	12	48	
Е	44	TPM-20458	4	Estate	12	48	
В	45	TPM-20460	5		12	60	
В	46	TPM-20462	1	Estate	12	12	
C	47	TPM-20480	5		12	60	
В	49	TPM-20527	1		12	12	
Е	50	TPM-20595	4		12	48	
В	51	TPM-20596	2		12	24	
C	52	TPM-20602	4	Estate	12	48	

	V.	ALLEY CEN	TER PRO	JECTS (LI	ST A)	
TAZ	Мар	County #	Density	Unit	Rate	ADT
C	53	TPM-20623	4	Estate	12	48
C	59	TPM-20661	2	Estate	12	24
В	60	TPM-20676	1	Estate	12	12
D	61	TPM-20677	3	Estate	12	36
E	62	TPM-20680	2	Estate	12	24
B	63	TPM-20685	4	Estate	12	48
A	64	TPM-20686	4	Estate	12	48
C	65	TPM-20690	5	Estate	12	60
E	66	TPM-20697	0	Estate	12	0
Ĉ	67	TPM-20707	3	Estate	12	36
D	68	TPM-20712	1	Estate	12	12
В	69	TPM-20723	2	Estate	12	24
C	71	TPM-20748	3	Estate	12	36
E	73	TPM-20780	3	Estate	12	36
C	74	TPM-20803	2	Estate	12	24
В	75	TPM-20003	1	Estate	12	12
D	76	TPM-20813	1	Estate	12	12
E	77	TPM-20825	2	Estate	12	24
В	78	TPM-20842	4	Estate	12	48
В	79	MUP-00-023	118	ac ag	2	236
C	80	MUP-01-016	135	daycare	4	540
	81	MUP-03-075	133	wireless	0	0
A C	82	MUP-03-083	1	Estate	12	12
	83	MUP-03-102	1	Estate	12	12
D	84	MUP-03-102 MUP-03-104	3	Estate	12	36
E		MUP-03-104 MUP-03-105	1	Estate	12	12
E	85		1		12	12
D	86	MUP-03-116	1	Estate wireless	0	0
E	87	MUP-03-118	1		12	12
E	88	MUP-03-133		Estate	12	12
C	89	MUP-04-007	10	Estate	10	100
E	90	MUP-04-029	10	SF	10	100
A	91	MUP-04-038	10	SF		12
C	92	MUP-04-041	1	Estate	12	0
В	93	MUP-72-061		steeple	0	
B	94	MUP-73-188		ac ag	2	12
C	95	MUP-76-010		Estate	12	
B	96	MUP-77-092		Estate	12	1294
В	97	MUP-79-140		MFDU	8	1384
C	98	MUP-86-022	1	Estate	12	12
В	99	MUP-87-052	1	Estate	12	12
В	100	MUP-88-034		Estate	12	12
С	101	MUP-91-029		ac ag	2	80
D	103	MUP-97-013		ksf ag	8	576
Α	105	MUP-99-005			2.5	75
Α	106	MUP-99-020			2.5	22.5
Α	107	ZAP-00-045	1		0	0
Е	108	ZAP-00-085	1		12	12
В	109	ZAP-00-094	1	Estate	12	12

	V.	ALLEY CEN	TER PRO	JECTS (LI	ST A)	
TAZ	Мар	County #	Density	Unit	Rate	ADT
A	110	ZAP-00-102	1	Estate	12	12
Е	112	ZAP-00-150	1	wireless	0	0
D	113	ZAP-00-157	1	wireless	0	0
D	114	ZAP-00-160	1	Estate	12	12
C	115	ZAP-01-007	25	ksf truck	6	150
D	117	ZAP-01-018	1	wireless	0	0
Е	118	ZAP-01-095	1	wireless	0	0
C	119	ZAP-01-114	1	wireless	0	0
В	120	ZAP-02-005	1	wireless	0	0
D	121	ZAP-02-027	2	Estate	12	24
C	122	ZAP-03-001	1	Estate	12	12
Α	123	ZAP-03-007	1	wireless	0	0
Α	124	ZAP-03-015	1	wireless	0	0
С	125	ZAP-03-019	1	Estate	12	12
Α	126	ZAP-03-038	1	Estate	12	12
Α	127	ZAP-03-054	1	wireless	0	0
С	128	ZAP-03-057	1	Estate	12	12
С	129	ZAP-04-012	1	Estate	12	12
C	130	ZAP-04-024	1	Estate	12	12
D	131	ZAP-94-009	1	wireless	0	0
В	132	ZAP-98-003	10	SF	10	100
С	133	ZAP-98-007	1	Estate	12	12
D	134	ZAP-99-019	1	wireless	0	0
С	135	STP-00-024	1	Estate	12	12
С	136	STP-00-075	1	Estate	12	12
В	137	STP-01-006	1	Estate	12	12
В	138	STP-02-015	4	Estate	12	48
C	139	STP-02-071	6	ksf self stor	2	12
С	140	STP-02-074	2	Estate	12	24
D	141	STP-03-021	25	ksf auto	20	500
D	142	STP-03-022	1	Estate	12	12
D	143	STP-03-023	21.6	ksf retail	40	864
D	144	STP-03-026	81	mini stor	2	162
D	145	STP-03-052	3	Estate	12	36
D	146	STP-03-060	1	Estate	12	12
E	147	STP-03-083	1	Estate	12	12
E	148	STP-04-013	1	Estate	12	12
В	149	STP-04-022	1	Estate	12	12
В	150	STP-98-040	3	Estate	12	36
D	152	REZ-03-003	42	MF	8	336
D	153	REZ-03-018	7	SF	10	70
В	155	REZ-98-008	2	Estate	12	24
A	156	GPA-04-012	296	MF	8	2368
В	157	SP-00-001	84	SF	8	672
D	158	SP-00-002	3	Estate	12	36
A	160	SP-04-007	342	<u> </u>	10	3420
C	161	SP-93-001	149		10	1490
Ā	162	SP-04-004	296		12	3552

	V	ALLEY CEN	TER PRO	JECTS (L	IST A)	
TAZ	Map	County #	Density	Unit	Rate	ADT
Α	7	TM-5014	22	SF	10	220
Α	15	TM-5175	65	SF	10	650
Α	28	TM-5359	9	Estate	12	108
Α	29	TM-5385			3650	
Α	64	TPM-20686	4	Estate	12	48
Α	81	MUP-03-075	1	wireless	0	0
Α	91	MUP-04-038	10	SF	10	100
Α	105	MUP-99-005	30	beds	3	90
Α	106	MUP-99-020	9	beds	3	27
Α	107	ZAP-00-045	1	wireless	0	0
Α	110	ZAP-00-102	1	Estate	12	12
Α	123	ZAP-03-007	1	wireless	0	0
Α	124	ZAP-03-015	1	wireless	0	0
Α	126	ZAP-03-038	1	Estate	12	12
Α	127	ZAP-03-054	1	wireless	0	0
Α	156	GPA-04-012	296	MF	8	2368
A	160	SP-04-007	342	SF	10	3420
Α	162	SP-04-004	296	MF	12	3552
	*·				TOTALS	14257

	V.	ALLEY CEN	TER PRO	JECTS (LI	ST A)	
TAZ	Мар	County #	Density	Unit	Rate	ADT
В	1	TM-4793	36	SF	10	360
В	4	TM-5001	18	SF	10	180
В	18	TM-5211	48	SF	10	480
В	32	TPM-19952	2	Estate	12	24
В	34	TPM-20239	5	Estate	12	60
В	37	TPM-20360	4	Estate	12	48
В	43	TPM-20450	4	Estate	12	48
В	45	TPM-20460	5	Estate	12	60
В	46	TPM-20462	1	Estate	12	12
В	49	TPM-20527	1	Estate	12	12
В	51	TPM-20596	2	Estate	12	24
В	60	TPM-20676	1	Estate	12	12
В	63	TPM-20685	4	Estate	12	48
В	69	TPM-20723	2	Estate	12	24
В	75	TPM-20811	1	Estate	12	12
В	78	TPM-20842	4	Estate	12	48
В	79	MUP-00-023	118	ac ag	2	236
В	93	MUP-72-061	1	steeple	0	0
В	94	MUP-73-188	22	ac ag	2	44
В	96	MUP-77-092	5	Estate	12	60
В	97	MUP-79-140	173	MFDU	8	1384
В	99	MUP-87-052	1	Estate	12	12
В	100	MUP-88-034	1	Estate	12	12
В	109	ZAP-00-094	1	Estate	12	12
В	120	ZAP-02-005	1	wireless	0	0
В	132	ZAP-98-003	10	SF	10	100
В	137	STP-01-006	1	Estate	12	12
В	138	STP-02-015	4	Estate	12	48
В	149	STP-04-022	ı	Estate	12	12
В	150	STP-98-040	3	Estate	12	36
В	155	REZ-98-008	2	Estate	12	24
В	157	SP-00-001	84	SF	8	672
					TOTALS	4116

(VC-A-B)

ΓAZ	Мар	County#	Density	Unit	Rate	ADT
C	2	TM-4944	11	SF	10	11
Ċ	8	TM-5028	12	SF	10	12
C	13	TM-5150	8	SF	10	8
C	19	TM-5212	5	Estate	12	6
C	20	TM-5222	14	SF	10	14
С	21	TM-5251	6	SF	10	6
C	22	TM-5263	52	Estate	12	62
C	23	TM-5272	11	SF	10	11
С	24	TM-5273	7	SF	10	7
C	25	TM-5301	2	Estate	12	2
C	30	TM-5403	79	SF	10	79
C	31	TPM-19397	5	Estate	12	(
С	35	TPM-20343	4	Estate	12	
С	36	TPM-20352	4	Estate	12	4
C	39	TPM-20419	3	Estate	12	
С	41	TPM-20435	3	Estate	12	
C	42	TPM-20438	2	Estate	12	
C	47	TPM-20480	5	Estate	12	(
С	52	TPM-20602	4	Estate	12	4
C	53	TPM-20623	4	Estate	12	4
C	59	TPM-20661	2	Estate	12	
C	65	TPM-20690	5	Estate	12	
С	67	TPM-20707	3	Estate	12	
C	71	TPM-20748	3	Estate	12	
С	74	TPM-20803	2	Estate	12	
C	80	MUP-01-016	135	daycare	4	54
С	82	MUP-03-083	1	Estate	12	
С	89	MUP-04-007	1	Estate	12	
C	92	MUP-04-041	1	Estate	12	
C	95	MUP-76-010	1	Estate	12	
С	98	MUP-86-022	1	Estate	12	
С	101	MUP-91-029	40	ac ag	2	
С	115	ZAP-01-007	25	ksf truck	6	1
С	119	ZAP-01-114	1.	wireless	0	
С	122	ZAP-03-001	1	Estate	12	
С	125	ZAP-03-019	1	Estate	12	
C	128	ZAP-03-057	1	Estate	12	
C	129	ZAP-04-012	1	Estate	12	
C	130	ZAP-04-024	1	Estate	12	
С	133	ZAP-98-007	1	Estate	12	
С	135	STP-00-024	1	Estate	12	
С	136	STP-00-075	1	Estate	12	
С	139	STP-02-071	6	ksf self stor	2	
C	140	STP-02-074	2	Estate	12	
С	161	SP-93-001	149	SF	10	14
					TOTALS	52

	V	ALLEY CEN	TER PRO	JECTS (LI	ST A)	
TAZ	Мар	County #	Density	Unit	Rate	ADT
D	3	TM-4957	19	SF	10	190
D	5	TM-5003	25	SF	10	250
D	6	TM-5004	218	SF+golf	10	2780
D	10	TM-5047	149	SF	10	1490
D	12	TM-5129	10	SF	10	100
D	14	TM-5173	176	SF	10	1760
D	16	TM-5176	77	SF	10	770
D	17	TM-5177	57	SF	10	570
D	26	TM-5305	22	SF	10	220
D	27	TM-5308	13	SF	10	130
D	40	TPM-20423	3	Estate	12	36
D	61	TPM-20677			36	
D	68	TPM-20712	1	Estate	12	12
D	76	TPM-20813	1	Estate	12	12
D	83	MUP-03-102	1	Estate	12	12
D	86	MUP-03-116	1	Estate	12	12
D	103	MUP-97-013	72	ksf ag	8	576
D	113	ZAP-00-157	1	wireless	0	0
D	114	ZAP-00-160	1	Estate	12	12
D	117	ZAP-01-018	1	wireless	0	0
D	121	ZAP-02-027	2	Estate	12	24
D	131	ZAP-94-009	1	wireless	0	0
D	134	ZAP-99-019	1	wireless	0	0
D	141	STP-03-021	25	ksf auto	20	500
D	142	STP-03-022	1	Estate	12	12
D	143	STP-03-023	21.6	ksf retail	40	864
D	144	STP-03-026	81	mini stor	2	162
D	145	STP-03-052	3	Estate	12	36
D	146	STP-03-060	1	Estate	12	12
D	152	REZ-03-003	42	MF	8	336
D	153	REZ-03-018	7		10	70
D	158	SP-00-002	3	Estate	12	36
					TOTALS	11020

(VC-A.D)

	V.	ALLEY CEN	TER PRO	JECTS (LI	(ST A)	
TAZ	Мар	County #	Density	Unit	Rate	ADT
Е	38	TPM-20362	2	Estate	12	24
E	44	TPM-20458	4	Estate	12	48
Е	50	TPM-20595	4	Estate	12	48
Е	62	TPM-20680	2	Estate	12	24
Е	66	TPM-20697	0	Estate	12	0
E	73	TPM-20780	3	Estate	12	36
Е	77	TPM-20825	2	Estate	12	24
E	84	MUP-03-104	3	Estate	12	36
Е	85	MUP-03-105	1	Estate	12	12
E	87	MUP-03-118	1	wireless	0	0
E	88	MUP-03-133	1	Estate	12	12
Е	90	MUP-04-029	10	SF	10	100
Е	108	ZAP-00-085	1	Estate	12	12
Е	112	ZAP-00-150	1	wireless	0	0
E	118	ZAP-01-095	1	wireless	0	0
E	147	STP-03-083	1	Estate	12	12
E	148	STP-04-013	1	Estate	12	12
	*				TOTALS	400

		VALL	EY CENTER PROJE	CTS (LIS	Т В)		
TAZ	MapID	County#	Description	Density	Unit	Rate	ADT
2	1		VC Towne Square	Mix	Mix	Mix	15774
4	2		San Pasqual Casino	20.16	ksf	100	2016
3	3		Pauma Casino	40	ksf	100	4000
3	4		Rincon Casino	14	ksf	100	1400
3	5		Club Estates	33	Estate	12	396
n/a		MUP-03-188	Wireless	0	wireless	0	0
n/a		MUP-03-022	Butler	0	wireless	0	0
n/a		MUP-73-108	Temp Office Trailer	0	ksf	0	0
n/a		MUP-75-025	Wireless	0	wireless	0	0
n/a		MUP-79-152	Add Fence	0	n/a	0	0
n/a		MUP-94-009	Brecht/ATT	0	wireless	0	0
n/a		MUP-97-007	Wireless	0	wireless	0	0
n/a		MUP-97-146	Grading Permit	0	n/a	0	0
n/a		MUP-98-007	Grading Permit	0	n/a	0	0
2	6	MUP-98-026	Cole Grade Pk	8.96	ac	50	448
2	7	P-03-083	VC Church	Mix	Mix	Mix	766
n/a		P-03-102	Wireless	0	wireless	0	0
n/a		P-03-104	Wireless	0	wireless	0	0
4	8	P-03-105	Miller Dog	2.4	ksf	10	24
n/a		P-03-133	Wireless	0	wireless	0	0
4	9	P-04-029	Participant Sport	5	ac	5	25
n/a		P-04-038	Rezone (no traffic)	0	n/a	0	0
n/a		P-73-188	Blackington Air Strip	0	n/a	0	0
n/a		SP-108015	Harold Johnson	0	n/a	0	0
n/a		SP-208010	Preston Variance	0'	n/a	0	0
n/a		SP-8802139-A	Grading Permit	0	n/a	0	0
n/a		SP-9302021-A	Grading Permit	0	n/a	0	0
n/a		SP-9808017	Grading Permit	0	n/a	0	0
n/a		STP-01-068	Wireless	0	wireless	0	0
2	10	STP-02-006	Countryside Vet	3.28	ksf	5	17
1	11	TM-5087	Orchard Run Residential	Mix	Mix	Mix	3423
4	12	TM-5152	Country Meadows Res.	8	SF	10	80
2	13	TM-5173	Lorinda	176	Estate	12	2112
2	14	TM-5232	Vesper Grove	7	SF	10	70
3	15	TPM-20436	Conway	4	SF	10	40
1	16	TPM-20470	Tebbs	3	SF	10	30
3	17	TPM-20689	Viking Grove	1	Estate	12	12
n/a		ZAP-00-107	Wireless	0	wireless	0	0
n/a		ZAP-01-114	Wireless	0		0	0
n/a		ZAP-01-018	Wireless	0	wireless	0	0

81

VALLEY CENTER PROJECTS (LIST B)										
TAZ	MapID	County#	Description	Density	Unit	Rate	ADT			
1	11	TM-5087	Orchard Run Residential	(50% occ.)	Mix	Mix	1712			
1	16	TPM-20470	Tebbs	3	SF	10	30			
	TOTAL ADT									

B2

	VALLEY CENTER PROJECTS (LIST B)											
TAZ	MapID	County#	Description	Density	Unit	Rate	ADT					
2	1		VC Towne Square	(50% occ)	Mix	Mix	7890					
2	6	MUP-98-026	Cole Grade Pk	8.96	ac	50	448					
2	7	P-03-083	VC Church	(50% occ)	Mix	Mix	383					
2	10	STP-02-006	Countryside Vet	3.28	ksf	5	16.4					
2	13	TM-5173	Lorinda	176	Estate	12	2112					
2	14	TM-5232	Vesper Grove	7	SF	10	70					
	TOTAL ADT											

83

	VALLEY CENTER PROJECTS (LIST B)										
TAZ	MapID	County#	Description	Density	Unit	Rate	ADT				
3	3		Pauma Casino	40	ksf	100	4000				
3	4		Rincon Casino	14	ksf	100	1400				
3	5		Club Estates	33	Estate	12	396				
3	15	TPM-20436	Conway	4	SF	10	40				
3	17	TPM-20689	Viking Grove	1	Estate	12	12				
	TOTAL ADT										

B4

	VALLEY CENTER PROJECTS (LIST B)											
TAZ	MapID	County#	Description	Density	Unit	Rate	ADT					
4	2		San Pasqual Casino	20.16	ksf	100	2016					
4	8	P-03-105	Miller Dog	2.4	ksf	10	24					
4	9	P-04-029	Participant Sport	5	ac	5	25					
4	12	TM-5152	Country Meadows Res.	8	SF	10	80					
TOTAL ADT							2145					

(VC-B-1) (VC-B-2) (VC-B-3) (VC-B-4)

Existing Conditions Worksheets

		•		
			•	
		•		
				•
				·
	•			
•			·	•
•	•			
	**			
		•	, • •	
		·		
·			,	
				•
	•			
· · ·				
	·			
	•		•	

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0.	<1>	0	0	<1	1	1	2>	0	1	2	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900 .
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50	50	50	50		50	50	50
Trailing Detector (ft)	0	0	•	0	0	0	0	0	_	0	0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Satd. Flow (prot)	0	1774	0	0	1827	1583	1770	3497	0	1770	3539	1583
Flt Permitted		0.967			0.981		0.950	•	•	0.950		
Satd. Flow (perm)	0	1774	0	0	1827	1583	1770	3497	0	1770	3539	1583
Right Turn on Red			· Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		7			-	62		. 9				123
Link Speed (mph)		. 30			30		•	30			30	
Link Distance (ft)		556			748			915			882	
Travel Time (s)		12.6			17.0	•		20.8			20.0	
Volume (vph)	281	83	45	72	111	· 57	38	559	49	57	484	113
Adj. Flow (vph)	305	90	49	78	121	62	. 41	608	. 53	62	526	123
Lane Group Flow (vph)	0	444	0	0	199	62	41	661	0	62	526	123
Tum Type	Split	•		Split		Perm	Prot			Prot	•	Over
Protected Phases	, 6	6		2	2		7	4		3	8	6
Permitted Phases						2						
Detector Phases	. 6	6		2	2	. 2	• 7	4		3	8	6
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	•	4.0	4.0	4.0
Minimum Split (s)	20.0	20.0		20,0	20:0	20.0	8.0	20.0		8.0	20.0	20.0
Total Split (s)	33.0	33.0	0.0	22.0	22.0	22.0	10.0	25.0	0.0	10.0	25.0	33.0
Total Split (%)	37%	37%	0%	24%	24%	24%	11%	28%	0%	11%	28%	37%
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	0.5	0.5		0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	None		-Coord	Coord		None	None		None	None	None
Act Effct Green (s)		25.0			24.2	24.2	5.9	20.7		5.9	22.7	25.0
Actuated g/C Ratio		0.28			0.27	0.27	0.07	0.23		0.07	0.25	0.28
v/c Ratio		0.89			0.40	0.13	0.35	0.81		0.53	0.59	0.23
Uniform Delay, d1		30.7			28.2	. 0.0	42.4	31.6		41.7	29.5	0.0
Delay		32.7			30.4	8.6	40.7	34.5		42.4	22.8	13.5
LOS		С		•	С	Α	D	С		D	C	В
Approach Delay		32.7			25.2			34.9			22.9	
Approach LOS		С			, C			C.			С	
Intersection Summary		•										

Intersection Summary

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.89

Intersection Signal Delay: 29.2

Intersection Capacity Utilization 70.6%

Intersection LOS: C
ICU Level of Service C

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	<1>	0	0	<1	1	1	2>	0	1	. 2	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	•	- 50	50	50	50	50		50	50	50
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	0
Turning Speed (mph)	. 15		9	. 15		9	15		9	15		9
Satd. Flow (prot)	0	1763	0	0	1833	1583	1770	3504	0	1770	3539	1583
Flt Permitted		0.969			0.984		0.950	•		0.950		
Satd. Flow (perm)	0	1763	0	0	1833	1583	1770	3504	0	1770	3539	1583
Right Tum on Red			Yes			Yes			Yes		•	Yes
Satd. Flow (RTOR)		12				28		8				286
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		556			748			915			882	
Travel Time (s)		12.6			17.0			20.8			20.0	
Volume (vph)	220	66	60	49	101	26	. 72	667	48	36	642	263
Adj. Flow (vph)	239	72	65	53	-110	28	78	725	52	. 39	698	286
Lane Group Flow (vph)	0	376	0	0	163	28	.78	777	0	39	698	286
Tum Type	Split			Split		Perm	Prot			Prot		Over
Protected Phases	6	6		2	2		7	4		3	8	6
Permitted Phases						2.						
Detector Phases	6	6		2	. 2	2	7	. 4		3	8	6
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	20.0	20.0		20.0	20.0	20.0	8.0	20.0		8.0	20.0	20.0
Total Split (s)	30.0	30.0	0.0	21.0	21.0	21.0	11.0	30.0	0.0	9.0	28.0	30.0
Total Split (%)	33%	33%	0%	.23%	23%	23%	12%	33%	0%	10%	31%	33%
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5	•	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5		0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	None		Coord	Coord		None	None		None	None	None
Act Effct Green (s)		21.8			23.4	23.4	6.8	27.4		5.0	24.0	21.8
Actuated g/C Ratio	-	0.24			0.26	0.26	0.08	0.30		0.06	0.27	0.24
v/c Ratio	•	0.86			0.34	0.06	0.59	0.72		0.40	0.74	0.48
Uniform Delay, d1		31.5			28.3	0.0	41.4	27.6		43.0	29.4	0.0
Delay		32.2			30.7	11.9	44.9	28.2		48.0	17.5	14.2
LOS		С			. С	В	D	С		D	В	В
Approach Delay		32.2			27.9			29.8			17.7	
Approach LOS		C.		•	С			C			В	
1.1												

Intersection Summary
Area Type:

Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 24.9

Intersection Capacity Utilization 68.1%

Intersection LOS: C ICU Level of Service B

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	. 0	<1	1	0	0	0	0	1	1	1	1	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50		•			50	50	50.	50	
Trailing Detector (ft)	0	0	0					0	0	0	0	
Tuming Speed (mph)	. 15		9	15		9	15		9	15		9
Satd. Flow (prot)	0	1770	1583	0	0	0	0	1863	. 1583	1770	1863	0
FIt Permitted		0.950							٠	0.950		
Satd. Flow (perm)	0	1770	1583	0	0	0	0	1863	1583	1770	1863	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			453						3 97.			
Link Speed (mph)		- 30			30			30			30	
Link Distance (ft)		443			610			882			1345	•
Travel Time (s)		10.1			13.9			20.0	•		30.6	
Volume (vph)	155	0.		0	0	0	0	494	365	104		0
Adj. Flow (vph)	168	0	453	0	.0	0	0	537	397	113	302	0
Lane Group Flow (vph)	0	168	. 453	0	0	0	Q	537	397	113	302	0
Tum Type	Perm		Perm						Perm	Prot		
Protected Phases		6						4		. 3	8	
Permitted Phases	6		6						4			
Detector Phases	6	6	. 6					4	4	3	8	
Minimum Initial (s)	4.0	4.0	4.0					4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0					20.0	20.0	8.0	20.0	
Total Split (s)	30.0	30.0	30.0	0.0	0.0	0.0	0.0	43.0	43.0	17.0	60.0	. 0.0
Total Split (%)	33%	33%	33%	0%	0%	- 0%	0%	48%	48%	19%	67%	0%
Yellow Time (s)	3.5	3.5	3.5					3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	.0.5	0.5					0.5	0.5	0.5	0.5	
Lead/Lag								Lag	Lag	Lead		
Lead-Lag Optimize?	· .							Yes	Yes	Yes		
Recall Mode	Coord	Coord						None	None	None	None	
Act Effct Green (s)		37.3	37.3					32.3	32.3	10.5	44.7	
Actuated g/C Ratio		0.41	0.41					0.36	0.36	0.12	0.50	
v/c Ratio		0.23	0.49					0.80	0.48	0.54	0.33	
Uniform Delay, d1		17.6	0.0					26.0	0.0	38.7	13.1	
Delay		20.7	2.7					. 38.5	13.8	22.9	20.6	
LOS		C	A				•	D	В	С	C 24.3	
Approach Delay		7.6						.28.0			21.2	
Approach LOS		Α						С			С	
Intersection Summary												

Intersection Summary

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2: and 6:SETL, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.80 Intersection Signal Delay: 20.1

Intersection Capacity Utilization 53.9%

Intersection LOS: C ICU Level of Service A

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0		1	0	0	0	0	1	1	1	1	0
Ideal Flow (vphpl)	1900		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50					50	50	50	50	
Trailing Detector (ft)	0	0	0					Ö	.0	0	Ō	
Turning Speed (mph)	15		9	15		9	. 15	•	9	15		9
Satd. Flow (prot)	0	1770	1583	O	0	0	0	1863	1583	1770	1863	0
Flt Permitted		0.950		•	•					0.950		
Satd. Flow (perm)	0	1770	1583	0	0,	0	.0	1863	1583	1770	1863	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		• •	308						272			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)	•	443			610			882			1345	
Travel Time (s)		10.1			13.9			20.0			30.6	
Volume (vph)	192	0	353	0	0	0	0	647	250	152	607	O
Adj. Flow (vph)	209	0	384	0	0	0	0	703	272	165	660	0
Lane Group Flow (vph)		209	384	0	0	0	0	703	272	165	660	0
Tum Type	Perm		Perm	•					Perm	Prot		
Protected Phases		6						4		3	8	
Permitted Phases	6		6						4		•	
Detector Phases	6	6	6					4	4	3	8	•
Minimum Initial (s)	4.0	4.0	4.0			•		4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0					20.0	20.0	8.0	20.0	
Total Split (s)	25.0	25.0	25.0	0.0	0.0	0.0	0.0		48,0	17.0	65.0	0.0
Total Split (%)	28%	28%	28%	0%	0%	0%	0%	53%	53%	19%	72%	0%
Yellow Time (s)	3.5	3.5	3.5					3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5			•		0.5	0.5	0.5	0.5	
Lead/Lag								Lag	Lag	Lead		
Lead-Lag Optimize?			•					Yes		Yes		
Recall Mode -	Coord	Coord						None	None	None	None	
Act Effct Green (s)		24.2	24.2					42.2	42.2	11.6	57.8	
Actuated g/C Ratio		0.27	0,27	•				0.47	0.47	0.13	0.64	
v/c Ratio		0.44	0.59					0.81	0.31	0.72	0.55	
Uniform Delay, d1		27.3	5.1					20.4	0.0	37.5	8.9	
Delay		28,3	7.0					28.3	10.2	33.6	13.8	
LOS		С	Α		•			С	В	С	В	
Approach Delay		14.5						23.3			17.8	
Approach LOS		В		•				С			В	
Intersection Summary		•										

Area Type:

Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2: and 6:SETL, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.81

Intersection Signal Delay: 19.2

Intersection Capacity Utilization 67.7%

Intersection LOS: B
ICU Level of Service B

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	0	0	0		1	1	1	0	0	1	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)			•	50	50	50	50	50			50	50
Trailing Detector (ft)				0	0	0	0	0			0	0
Turning Speed (mph)	15		9	15		9	15		9	- 15	_	9
Satd. Flow (prot)	0	0	0	0	1770	1583	1770	1863	0	0	1863	1583
Flt Permitted					0.950		0.950			_		
Satd. Flow (perm)	0	. 0	. 0	0	1770	1583	1770	1863	0	0	1863	1583
Right Turn on Red			Yes			Yes			Yes	_		Yes
Satd. Flow (RTOR)						122						68
Link Speed (mph)		30			30	•—		30	•		30	, -
Link Distance (ft)		550			849			1345			698	
Travel Time (s)		12.5			19.3			30.6			15.9	
Volume (vph)	0	0	0	219	.0	112	363	249	0	0	173	63
Adj. Flow (vph)	0	0	0	238	Ö	122	395	271	0	0	188	68
Lane Group Flow (vph)	0	0	0	0	238	122	395	271	Õ	0.		68
Turn Type				Perm		Perm	Prot		_			Perm
Protected Phases			-		2		7	4			8	
Permitted Phases	•			2		2	•	•			•	8
Detector Phases				2	2	. 2	7	4			8	. 8
Minimum Initial (s)				4.0	4.0	4.0	4.0	4.0			4.0	4.0
Minimum Split (s)				20.0	20.0	20.0	8.0	20.0			20.0	20.0
Total Split (s)	0.0	0.0	0.0	27.0	27.0	27.0	39.0	63.0	0.0	0.0	24.0	24.0
Total Split (%)	0%	0%	0%	30%	30%	30%	43%	70%	0%	0%	27%	27%
Yellow Time (s)				3.5	3.5	3.5	3.5	3.5			3.5	3.5
All-Red Time (s)				0.5	0.5	0.5	0.5	0.5			0.5	0.5
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Recall Mode				Coord	Coord	Coord	None	None	•		None	None
Act Effct Green (s)					38.9	38.9	25.1	43.1		· · ·	14.0	14.0
Actuated g/C Ratio					0.43	0.43	0.28	0.48			0.16	0.16
v/c Ratio					0.31	0.16	0.80	0.30			0.65	0.22
Uniform Delay, d1					16.7	0.0	30.1	14.3			35.7	0.0
Delay					20.3	4.8	24.1	18.3			35.0	8.2
LOS					C	Α	C	В			C	A
Approach Delay					15.1			21.8			27.8	
Approach LOS					В		•	С			С	
Intersection Summary	· · · · · · · · · · · · · · · · · · ·	····										

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.80

Intersection Signal Delay: 21.1

Intersection Capacity Utilization 54.9%

Intersection LOS: C ICU Level of Service A

	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	C/A/D
	Lane Configurations	0	0	00	0		1	1	1	0	0		SWR
	Ideal Flow (vphpl)	1900	1900	1900	1900		1900	1900	1900	1900		1 1900	1 1900
	Total Lost Time (s)	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0
	Leading Detector (ft)	7.0	4.0	4.0	50	50	50	50	50	4.0	4.0	4.0 50	
	Trailing Detector (ft)			•	0	.50	0	0	0			30 0	50
	Turning Speed (mph)	15		9	15	U	9	15	U	. 0	4 5	Ð	0 9
	Satd. Flow (prot)	. 0	0	0	0	1770	1583	1770	1863	9	. 15 0	á non	-
	Fit Permitted	U	U	U		0.950	1303	0.950	1003	U	U	1863	1583
	Satd. Flow (perm)	0	0	0	0		4500		4000	^	_	4000	4500
	Right Turn on Red	. 0	U	Yes	U	1770	1583	1770	1863	0	0	1863	1583
	_			res			Yes			Yes			Yes
	Satd. Flow (RTOR)		20			00	179		-00				155
	Link Speed (mph)		30			30			30			30	
	Link Distance (ft)		550			849			1345			698	
	Travel Time (s)	•	12.5			19.3			30.6	_	_	15.9	
	Volume (vph)	0	0	0	439	0	165	578	291	0	0	462	143
	Adj. Flow (vph)	0	0	0	477	0	179	608		. 0	0	497	155
	Lane Group Flow (vph)	0	0	0	_ 0	477	179	608	306	0	0	497	155
	Turn Type				Perm	_	Perm	Prot					Perm
	Protected Phases				_	2	_	7	4			8	
	Permitted Phases				<u>2</u> 2	_	2						8
	Detector Phases					2	2	7	4			8	8
	Minimum Initial (s)				4.0	4.0	4.0	4.0	4.0			4.0	4.0
	Minimum Split (s)				20.0	20.0	20.0	8.0	20.0			20.0	20.0
•	Total Split (s)	0.0	0.0	0.0	29.0	29.0	29.0	34.0	61.0	0.0	0.0	27.0	27.0
	Total Split (%)	0%	0%	0%	32%	32%	32%	38%	68%	0%	0%	30%	30%
	Yellow Time (s)				3.5	3.5	3.5	3.5	3.5			3.5	3.5
	All-Red Time (s)				0.5	0.5	0.5	0.5	0.5			0.5	0.5
	Lead/Lag						•	Lead				Lag	Lag
	Lead-Lag Optimize?							Yes				Yes	Yes
	Recall Mode	•			Coord	Coord		None	None			None	None
	Act Effct Green (s)					25.0	25.0	30.0	57.0			23.0	23.0
	Actuated g/C Ratio					0.28	0.28	0.33	0.63			0.26	0.26
	v/c Ratio	•				0.97	0.31	1.03	0.26			1.04	0.30
	Uniform Delay, d1					32.1	0.0	30.0	7.2			33.5	0.0
	Delay					59.5	4.3	71.4	12,9			78.8	4.8
	LOS				·	Ε	Α	Ε	В			Ε	A
	Approach Delay					44.4			51.8			61.2	
	Approach LOS			•		D			D			Ε	

Intersection Summary
Area Type:

Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.04
Intersection Signal Delay: 5

Intersection Signal Delay: 52.4 Intersection Capacity Utilization 96.3% Intersection LOS: D ICU Level of Service E

Level of service for ramp-freeway junction areas of influence B

L = (Equation 25-2 or 25-3) EQ P = 0.272 Using Equation 4 FM V = V (P) = 1463 pc/h

___Capacity Checks_

	Actual	Maximum	LOS F?
V	6231	9600	
FO V R12	2307	4600	No

FM

Level of Service Determination (if not F)_____

Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 19.9 pc/mi/lnR
R
12
A
Level of service for ramp-freeway junction areas of influence B

```
Merge Analysis
 Analyst:
                         bh
 Agency/Co.:
                          Darnell
 Date performed:
                         11/17/2005
 Analysis time period:
                         AM Peak
 Freeway/Dir of Travel:
                         I-15 Southbound On-Ramp
 Junction:
                         I-15 South/State Route 76
 Jurisdiction:
                         County SD/Caltrans
 Analysis Year:
                         Existing
 Description: 051008 - Gregory Canyon
                                    Freeway Data
 Type of analysis
                                              Merge
Number of lanes in freeway
Free-flow speed on freeway
                                              70.0
                                                              mph
Volume on freeway
                                               4500
                                                              vph
                                  On Ramp Data
 Side of freeway
                                              Right
Number of lanes in ramp
                                              1
Free-flow speed on ramp
                                              35.0
                                                             mph
Volume on ramp
                                               469
                                                              ифр
Length of first accel/decel lane
                                              500
                                                              ft
Length of second accel/decel lane
                                                              ft
                         _Adjacent Ramp Data (if one exists)
Does adjacent ramp exist?
                                              No
Volume on adjacent Ramp
                                                              \nabla ph
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp
                                                              ft
                    _Conversion to pc/h Under Base Conditions
Junction Components
                                         Freeway
                                                     Ramp
                                                                  Adjacent
                                                                  Ramp
Volume, V (vph)
                                         4500
                                                     469
                                                                            vph
Peak-hour factor, PHF
                                         0.90
                                                     0.90
Peak 15-min volume, v15
                                         1250
                                                     130
Trucks and buses
                                         10
                                                     . 10
Recreational vehicles
                                         2
                                                     2
Terrain type:
                                         Level
                                                     Level
  Grade
     Length
                                                 mi
                                                             mi
                                                                          mi
Trucks and buses PCE, ET
                                        1.5
                                                     1.5
Recreational vehicle PCE, ER
                                         1.2
                                                     1.2
Heavy vehicle adjustment, fHV
                                         0.949
                                                     0.949
Driver population factor, fP
                                         1.00
                                                     1,00
Flow rate, vp
                                         5270
                                                     549
                                                                            pcph
                          Estimation of V12 Merge Areas
                  L ≒
                                    (Equation 25-2 or 25-3)
                    EQ
                           0.308
                                   Using Equation 4
                   FΜ
                          (P ) =
                  \nabla = \nabla
                                    1626
                   12
                         F
                            FM
                               _Capacity Checks
                            Actual
                                          Maximum
                                                           LOS F?
                            5819
                                           9600
                                                           No
      FO
                            2175
                                           4600
                                                           No
      R12
                 Level of Service Determination (if not F)
Density, D = 5.475 + 0.00734 \text{ v}
                                                                 19.1
                                                                          pc/mi/ln
                                           12
```

Level of service for ramp-freeway junction areas of influence B

```
Merge Analysis
Analyst:
                        bh
Agency/Co.:
                        Darnell
Date performed:
                        11/17/2005
Analysis time period:
                        PM Peak
Freeway/Dir of Travel:
                        I-15 Southbound On-Ramp
                        I-15 South/State Route 76
Junction:
Jurisdiction:
                        County SD/Caltrans
Analysis Year:
                        Existing
Description: 051008 - Gregory Canyon
                                  Freeway Data
Type of analysis
                                             Merge
Number of lanes in freeway
                                             4
Free-flow speed on freeway
                                             70.0
                                                            mph
Volume on freeway
                                             4500
                                                            vph
                                  On Ramp Data
Side of freeway
                                             Right
Number of lanes in ramp .
Free-flow speed on ramp
                                             35.0
                                                           mph
Volume on ramp
                                             402
                                                            vph
Length of first accel/decel lane
                                             500
                                                            £t
Length of second accel/decel lane
                                                            ft
                        Adjacent Ramp Data (if one exists)
Does adjacent ramp exist?
                                             No
Volume on adjacent Ramp
                                                            vph
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp
                                                            ft
                    _Conversion to pc/h Under Base Conditions
Junction Components
                                        Freeway
                                                                Adjacent
                                                                Ramp
Volume, V (vph)
                                        4500
                                                    402
                                                                          лБр
Peak-hour factor, PHF
                                        0.90
                                                    0.90
Peak 15-min volume, v15
                                        1250
                                                    112
                                                                          v
Trucks and buses
                                       10
                                                    10
                                                                          욯
Recreational vehicles
Terrain type:
                                       Level
                                                   Level
    Grade
    Length
                                               mi
                                                                        mi
Trucks and buses PCE, ET
                                       1.5
                                                    1.5
Recreational vehicle PCE, ER
                                       1.2
                                                    1.2
Heavy vehicle adjustment, fHV
                                       0.949
                                                    0.949
Driver population factor, fP
                                       1.00
                                                   1.00
Flow rate, vp
                                       5270
                                                    471
                                                                          pcph
                        _Estimation of V12 Merge Areas
                  L =
                                   (Equation 25-2 or 25-3)
                   EQ
                          0.318
                                  Using Equation 4
                   FM
                  v = v (P ) =
                                   1677
                                         pc/h
                   1,2
                       F FM
                             __Capacity Checks
                           Actual
                                                         LOS F?
                                         Maximum
                           5741
                                         9600
                                                          Νo
     FO
                           2148
                                         4600
                Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v
                                              - 0.00627 L
                                                                18.9
```

Level of service for ramp-freeway junction areas of influence B

```
Diverge Analysis
 Analyst:
                          bh
 Agency/Co.:
                          Darnell
 Date performed:
                          11/17/2005
 Analysis time period:
                          AM
 Freeway/Dir of Travel:
                         I-15 Northbound Off
 Junction:
                          I-15 North Off/State Route 76
 Jurisdiction:
                          County SD/Caltrans
 Analysis Year:
                          Existing
Description: 051008 - Gregory Canyon
                                    Freeway Data
 Type of analysis
                                              Diverge
 Number of lanes in freeway
 Free-flow speed on freeway
                                              70.0
                                                             mph
 Volume on freeway
                                              4600
                                                              vph
                                   Off Ramp Data_
 Side of freeway
                                              Right
 Number of lanes in ramp
 Free-Flow speed on ramp
                                              35,0
                                                             mph.
 Volume on ramp
                                              331
                                                              vph
 Length of first accel/decel lane
                                              500
                                                              ft
 Length of second accel/decel lane
                                                             ft
                          _Adjacent Ramp Data (if one exists)
 Does adjacent ramp exist?
                                              Nο
 Volume on adjacent ramp
                                                             vph
 Position of adjacent ramp
 Type of adjacent ramp
 Distance to adjacent ramp
                                                             ft
                    _Conversion to pc/h Under Base Conditions
 Junction Components
                                                     Ramp
                                                                  Adjacent
                                                                 Ramp
 Volume, V (vph)
                                         4600
                                                     331
                                                                            vph
 Peak-hour factor, PHF
                                         0.90
                                                     0.90
Peak 15-min volume, v15
                                         1278
                                                     92
Trucks and buses
                                         0
                                                     0
                                                                            ક્ર
Recreational vehicles
                                         0
                                                     ٥
Terrain type:
                                         Level
                                                     Level
     Grade
                                         0.00
                                                 윰
                                                     0.00
     Length
                                         0.00
                                                     0.00
                                                             mi.
                                                                         mi
Trucks and buses PCE, ET
                                         1.5
                                                     1.5
Recreational vehicle PCE, ER
                                         1.2
                                                     1.2
Heavy vehicle adjustment, fHV
                                         1.000
                                                     1.000
Driver population factor, fP
                                         1.00
                                                     1.00
Flow rate, vp
                                         5111
                                                     368
                                                                           pcph
                          Estimation of V12 Diverge Areas
                   L =
                                    (Equation 25-8 or 25-9)
                   EQ
                           0.436 Using Equation 8
                   FD
                             (v - v) P =
                               F
                                  R
                                _Capacity Checks_
                            Actual
                                          Maximum
                                                           LOS F?
                            5111
                                           9600
                                                           No
      Fi
           F
     v
                            2436
                                           4400
                                                           No
      12
                            4743
                                           9600
      FO
           F
               R
                            368
                                          2000
                                                           No
      R
                 Level of Service Determination (if not F)
                       D = 4.252 + 0.0086 v - 0.009 L
                                                                20.7
                                            12
Level of service for ramp-freeway junction areas of influence C
```

Diverge Analysis Analyst: bh Agency/Co.: Darnell 11/17/2005 Date performed: Analysis time period: PM Freeway/Dir of Travel: I-15 Northbound Off I-15 North Off/State Route 76 Junction: County SD/Caltrans Jurisdiction: Analysis Year: Existing Description: 051008 - Gregory Canyon Freeway Data Type of analysis Diverge Number of lanes in freeway 70.0 Free-flow speed on freeway mph Volume on freeway 4600 vph Off Ramp Data Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 35.0 mph Volume on ramp 604 vph Length of first accel/decel lane 500 ft Length of second accel/decel lane ft _Adjacent Ramp Data (if one exists) No ... Does adjacent ramp exist? Volume on adjacent ramp vph Position of adjacent ramp Type of adjacent ramp Distance to adjacent ramp ft _Conversion to pc/h Under Base Conditions Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 4600 604 vph Peak-hour factor, PHF 0.90 0.90 Peak 15-min volume, v15 1278 168 Trucks and buses ٥. 0 ş. Recreational vehicles 0 0 용 Terrain type: Level Level Grade 0.00 0.00 윰 Length 0.00 mi 0.00 mi mi Trucks and buses PCE, ET 1.5 1.5 Recreational vehicle PCE, ER 1.2 1.2 Heavy vehicle adjustment, fHV 1.000 1.000 Driver population factor, fP 1.00 1.00 Flow rate, vp 5111 671 pcph Estimation of V12 Diverge Areas L = (Equation 25-8 or 25-9) EQ ₽ = 0.436 Using Equation 8 FD v = v + (v - v) P =2607 pc/h 12 R F R FD _Capacity Checks Actual Maximum LOS F? 5111 9600 No Fi 2607 4400 No 12 4440 9600 No FO F 671 2000 No R Level of Service Determination (if not F)

```
Diverge Analysis
 Analyst:
                         bh
 Agency/Co.:
                         Darnell
 Date performed:
                         11/17/2005
Analysis time period:
                         MΑ
 Freeway/Dir of Travel:
                         I-15 Southbound Off
 Junction:
                         I-15 South Off/State Route 76
 Jurisdiction:
                         County SD/Caltrans
                         Existing
Analysis Year:
Description: 051008 - Gregory Canyon
                                   Freeway Data
Type of analysis
                                              Diverge
Number of lanes in freeway
Free-flow speed on freeway
                                              70.0
Volume on freeway
                                              4600
                                  Off Ramp Data
Side of freeway
                                              Right
Number of lanes in ramp
Free-Flow speed on ramp
                                              35.0
                                                             mph
Volume on ramp
                                              572
                                                             vph
Length of first accel/decel lane
                                                             ft
Length of second accel/decel lane
                                                             ft.
                         _Adjacent Ramp Data (if one exists)
Does adjacent ramp exist?
Volume on adjacent ramp
                                                             vph
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
                                                             ft
                    _Conversion to pc/h Under Base Conditions
Junction Components
                                        Freeway
                                                    Ramp
                                                                 Adjacent
                                                                 Ramp
Volume, V (vph)
                                        4600
                                                     572
                                                                           vph
Peak-hour factor, PHF
                                        0.90
                                                    0.90
Peak 15-min volume, v15
                                        1278
                                                    159
Trucks and buses
                                        0
                                                    O
                                                                           욧
Recreational vehicles
                                        0
                                                    0
Terrain type:
                                        Level
                                                    Level
     Grade
                                        0.00
                                                    0.00
                                                                         윰
     Length
                                        0.00
                                                mi
                                                    0.00
                                                            mi
                                                                         mi
Trucks and buses PCE, ET
                                        1.5
                                                    1.5
Recreational vehicle PCE, ER
                                        1.2
                                                    1.2
Heavy vehicle adjustment, fHV
                                        1.000
                                                    1.000
Driver population factor, fP
                                        1.00
                                                    1.00
Flow rate, vp
                                        5111
                                                    636
                                                                           bcby
                         Estimation of V12 Diverge Areas
                  L =
                                   (Equation. 25-8 or 25-9)
                   EQ
                  P ·=
                          0.436
                                 Using Equation 8
                   FD
                          + (v - v) P =
                                            2587
                                 R FD
                              F
                               _Capacity Checks
                           Actual
                                         Maximum
                                                          LOS F?
                           5111
                                          9600
                                                          No
      Εi
                           2587
                                          4400
                                                          No
     12
       = 🔻 -
                           4475
                                          9600
                                                          No
      FO
          F
                           636
                                          2000
     R
                Level of Service Determination (if not F)
                       D = 4.252 + 0.0086 v - 0.009 L
                                           12
                                                      . D
Level of service for ramp-freeway junction areas of influence C
```

```
Diverge Analysis
Analyst:
                         bh
Agency/Co.:
                         Darnell
                         11/17/2005
Date performed:
Analysis time period:
                         PM
Freeway/Dir of Travel:
                         I-15 Southbound Off
Junction:
                         I-15 South Off/State Route 76
                         County SD/Caltrans
Jurisdiction:
Analysis Year:
                         Existing
Description: 051008 - Gregory Canyon
                                   Freeway Data
Type of analysis
                                             Diverge
Number of lanes in freeway
Free-flow speed on freeway
                                             70.0
                                                             mph
Volume on freeway
                                              4600
                                                             vph
                                  Off Ramp Data
Side of freeway
                                             Right
Number of lanes in ramp
Free-Flow speed on ramp
                                             35.0
                                                             mph
Volume on ramp
                                             545
                                                             vph
Length of first accel/decel lane
                                             500
                                                             ft
Length of second accel/decel lane
                                                             ft
                         _Adjacent Ramp Data (if one exists)
Does adjacent ramp exist?
                                             ÑΟ
Volume on adjacent ramp
                                                             \nabla ph
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
                                                             ft
                    Conversion to pc/h Under Base Conditions
Junction Components
                                        Freeway
                                                    Ramp
                                                                 Adjacent
                                                                 Ramp
Volume, V (vph)
                                        4600
                                                    545
                                                                           vph
Peak-hour factor, PHF
                                        0.90
                                                    0.90
Peak 15-min volume, v15
                                        1278
                                                    151
Trucks and buses
                                        n
                                                    0
Recreational vehicles
                                        0
                                                    0
Terrain type:
                                        Level
                                                    Level
     Grade
                                        0.00
                                                    0.00
                                                                         ዱ
     Length
                                        0.00
                                                mi
                                                    0.00
                                                            mi
                                                                         mi
Trucks and buses PCE, ET
                                        1.5
                                                    1.5
Recreational vehicle PCE, ER
                                        1,2
                                                    1.2
Heavy vehicle adjustment, fHV
                                        1.000
                                                    1.000
Driver population factor, fP
                                        1.00
                                                    1.00
Flow rate, vp
                                        5111
                                                    606
                                                                           pçph
                         Estimation of V12 Diverge Areas
                  L =
                                   (Equation 25-8 or 25-9)
                   ΕQ
                  P
                                  Using Equation 8
                   FD
                          + (v - v) P = 2570
                    = v
                   12
                              F R FD
                        R
                               _Capacity Checks
                           Actual
                                          Maximum
                                                          LOS F?
                           5111
                                          9600
                                                          Νо
     Fi
                           2570
                                          4400
                                                          No
     12
                           4505
                                          9600
                                                          No
     FO
          F
                           606
                                          2000
                                                          No
     R
                Level of Service Determination (if not F)
                       D = 4.252 + 0.0086 v - 0.009 L
                                                                        pc/mi/ln
                        R
                                           12
                                                        D
```

Level of service for ramp-freeway junction areas of influence ${\tt C}$

APPENDIX E
Existing + Project Worksheets

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	<1>	0	0	<1	1	1	2>	0	1	2	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50		50	50	50
Trailing Detector (ft)	0	0		0	0	0	Q	0		0	Ô	0
Turning Speed (mph)	15		9	15		9	15		9	15	_	9
Satd. Flow (prot)	0	1774	0	0	1827	1583	1770	3497	0	1770	3539	1583
Flt Permitted		0.967			0.981		0.950			0.950		.,
Satd. Flow (perm)	0	1774	0	0	1827	1583	1770	3497	0	1770	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		7				62		9				123
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		556			748			915			882	
Travel Time (s)		12.6			17.0			20.8			20.0	
Volume (vph)	281	83	45	72	111	57	38	567	49	57	492	113
Adj. Flow (vph)	305	90	49	78	121	62	41	616	53	62	535	123
Lane Group Flow (vph)	0	444	0	0	199	62	41	669	0	62	535	123
Turn Type	Split			Split		Perm	Prot		-	Prot		Over
Protected Phases	6	6		2	2		7	4		3	8	6
Permitted Phases						2						
Detector Phases	6	6		2	2	2	7	4		3	8	6
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4,0	4.0
Minimum Split (s)	20.0	20.0		20.0	20.0	20.0	8.0	20.0		8.0	20.0	20.0
Total Split (s)	33.0	33.0	0.0	22.0	22.0	22.0	10.0	25.0	0.0	10.0	25.0	33.0
Total Split (%)	37%	37%	0%	24%	24%	24%	11%	28%	0%	11%	28%	37%
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	0.5	0.5		0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	None		Coord	Coord	Coord	None	None		None	None	None
Act Effct Green (s)		25.0			24.5	24.5	5.9	20.5		5.9	22.5	25.0
Actuated g/C Ratio		0.28			0.27	0.27	0.07	0.23		0.07	0.25	0.28
v/c Ratio		0.89			0.40	0.13	0.35	0.83		0.53	0.60	0.23
Uniform Delay, d1		30.7			28.1	0.0	42.4	31.9		41.7	29.8	0.0
Delay		32.7			30.3	8.6	40.7	35.2		37.2	23.3	12.2
LOS		С			С	Α	D	D		D	С	В
Approach Delay		32.7			25.2			35.5			22.6	
Approach LOS		C			C			D			С	
Intersection Summary												

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.89 Intersection Signal Delay: 29.3

Intersection Capacity Utilization 70.8%

Intersection LOS: C ICU Level of Service C

٠.		•		, ÷		,			·.			
:	•							•				
				.*	•		,					
		()		; '	>					•		in an
	٠.		•	ŕ								
					**					5. •		a. 1 as s tal
				;			•					
			•				9		:	.•		
					•							
9 •	,											
							.	÷				
	:						*	· · · · · · · · · · · · · · · · · · ·				
										•		
r.				,						• • • •		
										•		
				. ,	•							
												the state of the state of
		٠.		·							•	
											•	
	7.											

and the second process of the second process

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	<1>	0	0	<1	1	1	2>	0	1	2	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50	50	50	50		50	50	50
Trailing Detector (ft)	0	0		0	0	0	0	0		. 0	0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Satd. Flow (prot)	0	1763	0	0	1833	1583	1770	3504	0	1770	3539	1583
Flt Permitted .		0.969			0.984		0.950			0.950		
Satd. Flow (perm)	0	1763	0	0	1833	1583	1770	3504	0	1770	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		12				28		8				286
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		556			748	•		915			882	
Travel Time (s)		12.6			17.0			20.8			20.0	
Volume (vph)	220	66	60	49	101	26	72	677	48	36	652	263
Adj. Flow (vph).	239	72	65	53		28	78	736	52	39	709	286
Lane Group Flow (vph)	0	376	ó	0	163	28	78	788	0	39	709	286
Turn Type	Split			Split		Perm	Prot		•	Prot	700	Over
Protected Phases	. 6	6		2	2	,	7	4		3	8	6
Permitted Phases						2	•	•			~	·
Detector Phases	6	6		2	2	2	7	4		3	8	6
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	20.0	20.0		20.0	20.0	20.0	8.0	20.0		8.0	20.0	20.0
Total Split (s)	30.0	30.0	0.0	21.0	21.0	21.0	11.0	30.0	0.0	9.0	28.0	30.0
Total Split (%)	33%	33%	0%	23%	23%	23%	12%	33%	0%	10%	31%	33%
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5	- 10	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5		0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5
Lead/Lag	•					0.0	Lead	Lag		Lead	Lag	Ų.J
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None -	None		Coord	Coord	Coord	None	None		None	None	None
Act Effct Green (s)		21.8			24.8	24.8	6.8	26.0		5.0	22.6	21.8
Actuated g/C Ratio		0.24			0.28	0.28	80.0	0.29		0.06	0.25	0.24
v/c Ratio		0.86			0.32	0.06	0.59	0.77		0.40	0.80	0.48
Uniform Delay, d1		31.5			27.2	0.0	41.4	29.0		43.0	30.8	0.0
Delay		32.2			30.2	11.9	44.9	29.3		45.5	19.7	13.1
LOS		C			C	В	D	23.3 C		43.3 D	19.7 B	13.1 B
Approach Delay		32.2			27.5		,	30.7		U	18.8	ņ
Approach LOS		Ç			C			G.7			10.0 B	
Intersection Summary			· · · · · · · · · · · · · · · · · · ·				15.0					

Area Type:

Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86 Intersection Signal Delay: 25.7 Intersection Capacity Utilization 68.4%

Intersection LOS: C ICU Level of Service B

*** * *	,	• •		5.00 Su		•			••	٠.	•		. *.
	· · .	÷	81.7	:			* .		•		.•		
÷	٠,						٠,			•			•
	· }	•	•							•			
٠. ٠ .					• .			•					•
						٠,				*	•	. * .	
									į				
,, .				•								· ·	
								•					•
		. •			. •	:.					•		
." ;								•				*	
	. •	•.				•							': · .
			•			;				÷			
						•	٠			;	*	4.	
		:										•	
											•		
* *:		,		•		•						t.,	
	•					•		•					. •
ę.		•				•							
	•						••						

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	<1	1	0	0	0	0	1	1	1	1	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50					50	50	50	50	
Trailing Detector (ft)	0	0	0					0	0	0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9.
Satd. Flow (prot)	0	1770	1583	0	0	0	0	1863	1583	1770	1863	Ō
Flt Permitted		0.950								0.950		
Satd. Flow (perm)	0	1770	1583	0	0	0	0	1863	1583	1770	1863	0
Right Turn on Red			Yes			Yes		,	Yes			Yes
Satd. Flow (RTOR)			453						397			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		443	•		610			882			1345	
Travel Time (s)		10:1			13.9			20.0			30.6	
Volume (vph)	165	0	417	0	0	0	0	502	365	183	286	0
Adj. Flow (vph)	179	0	453	0	0	0	0	546	397	199	311	Ō
Lane Group Flow (vph)	0	179	453	0	0	0	0	546	397	199	311	0
Turn Type	Perm		Perm						Perm	Prot		_
Protected Phases		6						4		3	8	
Permitted Phases	6		6						4	_		
Detector Phases	6	6	6					4	4	3	8	
Minimum Initial (s)	4.0	4.0	4.0					4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0					20.0	20.0	8.0	20.0	
Total Split (s)	28.0	28.0	28.0	0.0	0.0	0.0	0.0	41.0	41.0	21.0	62.0	0.0
Total Split (%)	31%	31%	31%	0%	0%	0%	0%	46%	46%	23%	69%	0%
Yellow Time (s)	3.5	3.5	3.5			,		3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5					0.5	0.5	0.5	0.5	
Lead/Lag								Lag	Lag	Lead	, -	
Lead-Lag Optimize?								Yes	Yes	Yes		
Recall Mode	Coord	Coord	Coord					None	None	None	None	
Act Effct Green (s)		32,1	32.1					31.5	31.5	14.3	49.9	
Actuated g/C Ratio		0.36	0.36					0.35	0.35	0.16	0.55	
v/c Ratio		0.28	0.53					0.84	0.49	0.71	0.30	
Uniform Delay, d1		20.7	0.0					26.8	0.0	35.8	10.7	
Delay		23.7	3.0					39.6	13.8	23.2	20.8	
LOS		С	Α					D	В	С	С	
Approach Delay		8.8						28.7			21.7	
Approach LOS		Α						C			С	
Intersection Summary												

Area Type:

Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2: and 6:SETL, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.84

Intersection Signal Delay: 21.0

Intersection Capacity Utilization 59.7%

Intersection LOS: C ICU Level of Service A

to an out of the same of the s

ŧ	٠	;	:	•		·		·: .	
	, ; ;	• .			•				•
	. *						ı		
							•		
						•	•	. *	
	to the second		• . • .						
	• ;;.								
			: .•						
								, <u>4</u>	
		;		,				te e e e	e e e e e e e e e e e e e e e e e e e
	÷ ;		•					•	en e
	. : . :		•					<i>:</i>	
······································			•						

Lane Group	SEL		SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0		1	0	0	0	0	1	1	1	1	0
Ideal Flow (vphpl)	1900		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0			4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50		50					50	50	50	50	
Trailing Detector (ft)	0		0					0	0	0	0	
Turning Speed (mph)	15		9	15	•	9	15		9	15		9
Satd. Flow (prot)	0		1583	0	0	0	0	1863	1583	1770	1863	0
Flt Permitted		0.950						•		0.950		
Satd. Flow (perm)	0	1770	1583	0	0	0	0	1863	1583	1770	1863	0
Right Tum on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			321						272			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		443			610			882			1345	
Travel Time (s)		10.1			13.9			20.0			30.6	
Volume (vph)	204	0	353	0	0	0	0	657	250	246	617	0
Adj. Flow (vph)	222	0	384	0	0	0	0	714	272	267	671	ő
Lane Group Flow (vph)	0	222	384	0	0	0	0	714	272	267	671	Ö
Turn Type	Perm		Perm						Perm	Prot	0, ,	
Protected Phases		6						4		3	8	
Permitted Phases	6		6					_	4		•	
Detector Phases	6	6	6					4	4	3	8	
Minimum Initial (s)	4.0	4.0	4.0					4.0	4.0	4.0	4.0	:
Minimum Split (s)	20.0	20.0	20.0					20.0	20.0	8.0	20.0	
Total Split (s)	22.0	22.0	22.0	0.0	0.0	0.0	0.0	46.0	46.0	22.0	68.0	0.0
Total Split (%)	24%	24%	24%	0%	0%	0%	0%	51%	51%	24%	76%	0%
Yellow Time (s)	3.5	3.5	3.5					3.5	3.5	3.5	3.5	0,0
All-Red Time (s)	0.5	0.5	0.5					0.5	0.5	0.5	0.5	
Lead/Lag								Lag	Lag	Lead	0.0	
Lead-Lag Optimize?								Yes	Yes	Yes		
Recall Mode	Coord	Coord	Coord					None	None	None	None	
Act Effct Green (s)		20.1	20.1					41,7	41.7	16.2	61.9	
Actuated g/C Ratio		0.22	0.22					0.46	0.46	0.18	0.69	
v/c Ratio	•	0.56	0.64			,		0.83	0.31	0.84	0.52	
Uniform Delay, d1		31.0	4.7					21.0	0.0	35.6	6.9	
Delay		32.5	7.1					28.0	8.5	29.3	14.1	
LOS		C	Α					C	Α	C	B	
Approach Delay		16.4						22.6	• •	•	18.5	
Approach LOS		В						C			70.0 B	
Intersection Summary								_				

Intersection Summary

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2: and 6:SETL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.84 Intersection Signal Delay: 19.6

Intersection Capacity Utilization 74.7%

Intersection LOS: B
ICU Level of Service C

en de la companya de

entra de la companya
And the second of the second o

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	0	0	0	<1	1	1	1	0	0	1	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)				50	50	50	50	50			50	50
Trailing Detector (ft)				0	0	0	Q	0			0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Satd. Flow (prot)	0	0	0	0	1770	1583	1770	1863	0	0	1863	1583
Flt Permitted					0.950		0.950					
Satd. Flow (perm)	0	0	0	0	1770	1583	1770	1863	Ō	0	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						208						79
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		550			849			1345			698	
Travel Time (s)		12.5			19.3			30.6			15.9	
Volume (vph)	0	0	O.	219	0	191	363	268	0	0	261	73
Adj. Flow (vph)	0	0	O	238	0	208	395	291	0	0	284	79
Lane Group Flow (vph)	0	0	O	0	238	208	395	291	0	0	284	79
Turn Type				Perm		Perm	Prot					Perm
Protected Phases					2		7	4			8	
Permitted Phases				2		2						8
Detector Phases				2	2	2	7	4			8	. 8
Minimum Initial (s)				4.0	4.0	4.0	4.0	4.0			4.0	4.0
Minimum Split (s)				20.0	20.0	20.0	8.0	20.0			20.0	20.0
Total Split (s)	0.0	0.0	0.0	25.0	25.0	25.0	37.0	65.0	0.0	0.0	28.0	28.0
Total Split (%)	0%	0%	0%	28%	28%	28%	41%	72%	0%	0%	31%	31%
Yellow Time (s)				3.5	3.5	3.5	3.5	3.5			3.5	3.5
All-Red Time (s)				0.5	0.5	0.5	0.5	0.5			0.5	0.5
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Recall Mode				Coord	Coord	Coord	None	None			None	None
Act Effct Green (s)					35.0	35.0	25.0	47.1			18.1	18.1
Actuated g/C Ratio	•	•			0.39	0.39	0.28	0.52			0.20	0.20
v/c Ratio					0.35	0.28	0.80	0.30			0.76	0.21
Uniform Delay, d1					19.4	0.0	30.3	12.2			33.9	0.0
Delay					23.4	4.2	27.3	21.3			33,2	6.7
LOS					С	Α	С	С			C	Α
Approach Delay					14.5			24.8			27.5	
Approach LOS					В			Ç			С	
1.1												

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.80 Intersection Signal Delay: 22.3 Intersection Capacity Utilization 60.0%

Intersection LOS: C ICU Level of Service A

darnelsand-sx51

					" .	
e e e e e e e e e e e e e e e e e e e			+ W	w Yak		
				:		
	. • • • • • • • • • • • • • • • • • • •					
				.*.		
		•				
	in a second					

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	0	0	0	<1	1	1	1	0	0	1	1
ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)				50	50	50	50	50	7.0	7.0	50	50
Trailing Detector (ft)				0	0	0	0	0			0	0
Turning Speed (mph)	15		9	15	_	9	15	·	9	15		9
Satd. Flow (prot)	0	0	0	0	1770	1583	1770	1863	Ŏ	0	1863	1583
Flt Permitted		_	_	_	0.950	1000	0.950	1000	· ·	U	1003	1303
Satd. Flow (perm)	0	0	0	0	1770	1583	1770	1863	0	0	1863	1583
Right Turn on Red			Yes		,,,,	Yes	.,,,	1000	Yes		1003	Yes
Satd. Flow (RTOR)						266			103			160
Link Speed (mph)		30			30	200		30			30	100
Link Distance (ft)		550			849			1345			698	
Travel Time (s)		12.5			19.3			30,6		•	15.9	
Volume (vph)	0	0	0	439	0.0	258	578	313	0	0	566	155
Adj. Flow (vph)	0	0	ō	453	ŏ	266	596	323	0	0	584	160
Lane Group Flow (vph)	0	ō	ō	0	453	266	596	323	0	0	584	160
Turn Type	_	_	_	Perm	100	Perm	Prot	020	· ·	U	304	Perm
Protected Phases				. 0	2	1 Oilli	7	4			8	L CITII
Permitted Phases				2		2	•	. 7			0	8
Detector Phases				2	2	2	7	4			8	8
Minimum Initial (s)				4.0	4.0	4.0	4.0	4.0			4.0	4.0
Minimum Split (s)				20.0	20.0	20.0	8.0	20.0			20.0	20.0
Total Split (s)	0.0	0.0	0.0	26.0	26.0	26.0	33.0	64.0	0.0	0.0	31.0	31.0
Total Split (%)	0%	0%	0%	29%	29%	29%	37%	71%	0%	0%	34%	34%
Yellow Time (s)			7	3.5	3.5	3.5	3.5	3.5	0.70	G 70	3.5	3.5
All-Red Time (s)				0.5	0.5	0.5	0.5	0.5			0.5	0.5
Lead/Lag					0.0	0.0	Lead	0.0			Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Recall Mode				Coord	Coord	Coord	None	None			None	None
Act Effct Green (s)					22.0	22.0	29.0	60.0			27.0	27.0
Actuated g/C Ratio					0.24	0.24	0.32	0.67			0.30	0.30
v/c Ratio					1.05	0.45	1.05	0.26			1.04	0.27
Uniform Delay, d1					34.0		30.5	6.0			31.5	0.0
Delay					81.4	3.9	68.4	11.0			74.6	4.3
LOS					F	A	E	В			74.0 E	4.5 A
Approach Delay		•			52.8			48.2			59.4	7
Approach LOS					D			D			53.7 E	
Intersection Summary											January 1	

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.05 Intersection Signal Delay: 53.1 Intersection Capacity Utilization 98.8%

Intersection LOS: D ICU Level of Service E

engant og kommune til en skriver. Skriver og skriver	•			
Section 1997	•			
		:		· in the second
;	·			
Sey 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
		•		
r c				
•				A. Charley or a second
<i>*</i>				
:				· · · · · · · · · · · · · · · · · · ·
			• •	
	:			
•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•	
			•	
·			•	
**	14 - 14 -			
	•	•		
•	~ i .			
	• • •			
	•	* **		
<i>∴</i>		•		
1	,			en e
			•	
		•		
•	,		•	
•			•	
1.		•		
A second of the	•	,	•	* * * * * * * * * * * * * * * * * * *
	•	. :		
Harris Commence		1 .	•	
and the second second			•	•
- \$4				
	٤		•	• • •
$ \mathcal{L}_{\mathcal{D}}(t) = s ^{- t }$	•			•
₹ *	,			•
As a second of		٠		
Salar en et 2 Din en			•	
1.0	· ·		•	• •
			•	
•				
	•			
		,		•
•				· · · · · · · · · · · · · · · · · · ·
			•	
		• • • •	· · · · · · · · · · · · · · · · · · ·	
•			•	
			·	
		Professional Contraction	A STATE OF S	
			•	
				4

HCS2000: Unsignalized Intersections Release 4.1d

TWO-WAY STOP CONTROL SUMMARY

Analyst: bh

Agency/Co.: Darnell
Date Performed: 11/16/2005

Analysis Time Period: AM

Intersection: SR-76/Project Access

Jurisdiction: County SD

Units: U. S. Customary

Analysis Year: Existing+Project

Project ID: 051008 Gregory Cyn East/West Street: SR-76

North/South Street: Project Access

Intersection Orientation: EW

Study period (hrs): 0.25

Major Street:				d Adjus					
Major Bereet.	Approach	Eas	stbound			Wes	tbound		* '
	Movement	1	2	3		4	5	6	
		L	T	·R	1	. L .	T	R	
Volumė	· · · · · · · · · · · · · · · · · · ·	 	420	98		5 ·	265		
Peak-Hour Facto	r, PHF		1.00	1.00		1.00	1.00		
Hourly Flow Rat	e, HFR		420	98		5	265		
Percent Heavy V.						0			
Median Type/Sto		TWLTL				/ 5			
RT Channelized?						•			
Lanes			1	0		0	1		
Configuration	•			R		LT			
Upstream Signal	? .		No	-•			No		
								•	
Minor Street:	Approach	Nor	thboun	d	•	Sou	thbound		
	Movement	7	8	9	1	10	11	12	• .
		L	T	R	1	L	T .	R	
Volume		98	·	· 5					
Peak Hour Facto	r, PHF	1.00		1.00		-			
Hourly Flow Rate	•	98		5					
Percent Heavy V		0		Ó Í					
Percent Grade (0	-			0		
Flared Approach		Storage		No	/		_		/
Lanes	. – - ,	0		0	,				,
Configuration			LR	-					

Approach	_Delay, EB	Queue WB	Le	ngtl		and Lev rthboun		Ser		outhbou	nd	
Movement Lane Config	. 1	4 LT		7	•	8 _. LR	9	1	. 10	11	12	
v (vph)		5	•			103				· · · · · · · · · · · · · · · · · · ·	<u></u>	
C(m) (vph)		1058	3			611						
V/c		0.00)	•		0.17	•			•		
95% queue length		0.01	L			0.60						
Control Delay		8.4				12.1					•	
LOS		A		•		В						
Approach Delay						12.1						
Approach LOS						В						

TWO-WAY STOP CONTROL SUMMARY

Analyst: bh
Agency/Co.: Darnell
Date Performed: 11/16/2005
Analysis Time Period: PM
Intersection: SR-76/Project Access
Jurisdiction: County SD

Units: U. S. Customary

C(m) (vph)

95% queue length

Control Delay

Approach Delay

Approach LOS

v/c

LOS

Analysis Year: Existing+Project

Project ID: 051008 Gregory Cyn East/West Street: SR-76

North/South Street: Project Access

Intersection Orientation: EW

Study period (hrs): 0.25

Major Street: Ar	proach	icle Volu	stbound				stbound			
	ovement	1	2	3	1	4	5	6		
) vement	L	T	R	1	I.	T	R		
			• .	••		~ .	-			
Volume			470	116	·····	5	605			
Peak-Hour Factor,	PHF		1.00	1.00		1.00	1.00			
Hourly Flow Rate,	HFR		470	116		5	605			
Percent Heavy Veh	nicles		·			0 .				
Median Type/Stora	age	TWLTL		•		/ 3				
RT Channelized?	2									
Lanes			1 (. 0	1			
Configuration			TI	3		L:	r			
Upstream Signal?			No				No			
	•	•								
Minor Street: Ap	proach	Noi	thbound	i		Son	athboun	d		
Mc	ovement	7	8	. 9	I	10	11	12		
·		L .	T	R	i	L	T	R		
Volume		116		6 ·						
Peak Hour Factor,	PHF	1.00		1.00						
Hourly Flow Rate,	HFR	116		6		•				
Percent Heavy Veh		0		0				•		
Percent Grade (%)		·	0				0			
Flared Approach:		/Storage		No	/				1	
Lanes		ō	. ()						
Configuration			LR							
-										
	Delay,	Queue Ler	igth, ar	nd Leve	ıl o	f Serv		·		
			N7 ~ ~ 4	hbound	!		Sout	hbound		
Approach	EB	WB			-					
		WB 4	7	8	9	1 :		11	12	
Approach Movement Lane Config	EB				-	1			12	

999

0.01

0.02

8.6

Α

466

0.26

1.04

15.4

C

15.4

C ·

Level of service for ramp-freeway junction areas of influence B

```
Merge Analysis
Analyst:
                         bh
Agency/Co.:
                         Darnell
Date performed:
                         11/17/2005
Analysis time period:
                         PM Peak
Freeway/Dir of Travel:
                         I-15 Northbound On-Ramp
Junction:
                         I-15 North/State Route 76
Jurisdiction:
                         County SD/Caltrans
Analysis Year:
                         Existing+Project
Description: 051008 - Gregory Canyon
                                   Freeway Data
Type of analysis
                                              Merge
Number of lanes in freeway
                                              4
Free-flow speed on freeway
                                              70.0
                                                             mph
Volume on freeway
                                              4600
                                                             yph
                                   On Ramp Data
Side of freeway
                                              Right
Number of lanes in ramp
Free-flow speed on ramp
                                              35.0
                                                             mph
Volume on ramp
                                              733
                                                             vph
Length of first accel/decel lane
                                              500
                                                             ft
Length of second accel/decel lane
                                                             ft
                          Adjacent Ramp Data (if one exists)
Does adjacent ramp exist?
                                              No
Volume on adjacent Ramp
                                                             vph
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp
                                                             ft
                    _Conversion to pc/h Under Base Conditions
Junction Components
                                        Freeway
                                                     Ramp
                                                                 Adjacent
                                                                 Ramp
Volume, V (vph)
                                        4600
                                                     733
                                                                           vph
Peak-hour factor, PHF
                                        0.90
                                                     0.90
Peak 15-min volume, v15
                                        1278
                                                     204
Trucks and buses
                                        10
                                                     10
                                                                           윰
Recreational vehicles
                                        2
                                                     2
Terrain type:
                                        Level
                                                    Level
     Grade
     Length
                                                             mi
                                                                         mi
Trucks and buses PCE, ET
                                        1.5
                                                     1.5
Recreational vehicle PCE, ER
                                        1.2
                                                    1.2
Heavy vehicle adjustment, fHV
                                        0.949
                                                    0.949
Driver population factor, fP
                                        1,00
                                                    1.00
Flow rate, vp
                                        5387
                                                     858
                                                                           pcph
                         Estimation of V12 Merge Areas
                  L
                                   (Equation 25-2 or 25-3)
                   EQ
                  Р
                           0.270
                                   Using Equation 4
                   FM
                           (P
                              )
                                   1454
                                           pc/h
                   12
                            FM
                                Capacity Checks
                           Actual
                                          Maximum
                                                          LOS F?
                           6245
                                          9600
                                                          No
     FO
                           2312
                                          4600
     R12
                 Level of Service Determination (if not F)
Density, D = 5.475 + 0.00734 v + 0.0078 v
                                              - 0,00627 L
                                                                20.0~
         R
                              R
                                           12
```

Level of service for ramp-freeway junction areas of influence B

Density, D = 5.475 + 0.00734 v + 0.0078 v

R

Level of service for ramp-freeway junction areas of influence B

R

E11

- 0.00627 L

12

pc/mi/ln

Density, D = 5.475 + 0.00734 + 0.0078

R

Level of service for ramp-freeway junction areas of influence B

R

E12

- 0.00627 L

12

19.1

pc/mi/ln

Level of Service Determination (if not F)

Density, D = 4.252 + 0.0086 v - 0.009 L = 21.1 pc/mi/lnR 12 D

Level of service for ramp-freeway junction areas of influence C

Actual Maximum LOS F?

v = v 5111 9600 No

Fi F

v 2664 4400 No

12

v = v - v 4338 9600 No

FO F R

v 773 2000 No

R

Level of Service Determination (if not F)

Density, D = 4.252 + 0.0086 v - 0.009 L = 22.7 pc/mi/ln R 12 D

Level of service for ramp-freeway junction areas of influence C

Level of service for ramp-freeway junction areas of influence C

```
Analyst:
                         bh
Agency/Co.:
                         Darmell
Date performed:
                         11/17/2005
Analysis time period:
                        PM
Freeway/Dir of Travel:
                        I-15 Southbound Off
Junction:
                         I-15 South Off/State Route 76
Jurisdiction:
                         County SD/Caltrans
Analysis Year:
                        Existing+Project
Description: 051008 - Gregory Canyon
                                  _Freeway Data
Type of analysis
                                             Diverge
Number of lanes in freeway
                                             70.0
Free-flow speed on freeway
                                                            mph
Volume on freeway
                                             4600
                                                            vph
                                 _Off Ramp Data_
Side of freeway
                                             Right
Number of lanes in ramp
                                             1
Free-Flow speed on ramp
                                             35.0
                                                            mph
Volume on ramp
                                             557
                                                             vph
Length of first accel/decel lane
                                             500
                                                             ft
Length of second accel/decel lane
                                                             ft
                         Adjacent Ramp Data (if one exists)
Does adjacent ramp exist?
                                             No
Volume on adjacent ramp
                                                             vph
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
                                                             ft
                    _Conversion to pc/h Under Base Conditions
Junction Components
                                     Freeway
                                                    Ramp
                                                                Adjacent
                                                                Ramp
Volume, V (vph)
                                                    557
                                        4600
                                                                           vр'n
Peak-hour factor, PHF
                                        0.90
                                                    0.90
Peak 15-min volume, v15
                                        1278
                                                    155
Trucks and buses
                                        0
                                                    0
Recreational vehicles
                                        0
                                                    0
Terrain type:
                                        Level
                                                    Level
    Grade
                                        0.00
                                                    0.00
    Length
                                        0.00
                                                    0.00
Trucks and buses PCE, ET
                                        1.5
                                                    1.5
Recreational vehicle PCE, ER
                                        1.2
                                                    1.2
Heavy vehicle adjustment, fHV
                                        1.000
                                                    1.000
Driver population factor, fP
                                        1.00
                                                    1.00
                                        5111
Flow rate, vp
                                                    619
                                                                           pcph
                         Estimation of V12 Diverge Areas
                  L
                                   (Equation 25-8 or 25-9)
                   EQ
                  P
                          0.436 Using Equation 8
                   FD
                             (v - v) P = 2578
                              F R FD
                               _Capacity Checks
                           Actual
                                          Maximum
                                                          LOS F?
                           5111
                                          9600
                                                          No
                           2578
                                          4400
                                                          No
     12
                           4492
                                          9600
                                                          No
     FO
           F
                           619
                                          2000
                 Level of Service Determination (if not F)
```

R 12 D
Level of service for ramp-freeway junction areas of influence C

D = 4.252 + 0.0086 v - 0.009 L

Density,

21.9

pc/mi/ln

Two-	Way Two-Lane Highway S	egment A	nalysie	3	
Analyst	bh				
Agency/Co.	Darnell				
Date Performed	1/5/2006				
Analysis Time Period	PM				
Highway	State Route 76				
From/To	Pankey to Couser				
Jurisdiction	County				
Analysis Year	Existing+Project				
Description 051008 - G	regory Canyon				
·	Input Data	·		····	······································
Highway class Class 1					
Shoulder width 6.	0 ft Peak-hour	factor.	PHF	٥.9	an
Lane width 12	.0 ft % Trucks			21	
•	5 mi % Recreat			0	=
	vel % No-pass			100	
Grade: Length	mi Access po		•	4	/mi
Up/down	8			•	7101
Two-way hourly volume,	v 1316 veh/ h				
Directional split		· Ki			
	Average Travel Sp				
					
Grade adjustment factor	, fG	1.00			
PCE for trucks, ET	•	1.1			
PCE for RVs, ER		1.0			
Heavy-vehicle adjustmen	t factor,	0.979	4-		
Two-way flow rate, (note		1493	pc/h		
Highest directional spl	it proportion (note-2)	851	pc/h		
Free-Flow Speed from Fi					
Field measured speed, S	FM	-	mi/h		
Observed volume, Vf		-	veh/h		
Estimated Free-Flow Spe					
Base free-flow speed, B		60.0	mi/h		
Adj. for lane and should Adj. for access points,		0.0	mi/h		
Adj. 101 decess points,	#A	1.0	mi/h		
Free-flow speed, FFS	•	59.0	mi/h		'.
Adjustment for no-passing		1.6	mi/h		
Average travel speed, A	rs	45.8	mi/h		
	Percent Time-Spent-	Following			
Condo addisates to describe					
Grade adjustment factor,	IG.			1.00	
PCE for trucks, ET PCE for RVs, ER				1.0	
Heavy-vehicle adjustment	factor fuv			1.0	
Two-way flow rate, (note-				1.000	nc/h
Highest directional spli	· · · · · · · · · · · · · · · · · · ·			1462 833	pc/h
Base percent time-spent-				72.3	8
Adj.for directional dist	ribution and no-passin	ng zones.	fd/nn	7.7	u
Percent time-spent-follo		,,		80.0	8
Level of	Service and Other Per	formance	Measu	res	
Years of severine the					
Level of service, LOS			—	D	
Volume to capacity ratio				0.47	
Peak 15-min vehicle-mile				548	veh-mi
Peak-hour vehicle-miles Peak 15-min total travel				1974	veh-mi
Town 10 main cocar craves				12.0	veh-h

```
Two-Way Two-Lane Highway Segment Analysis
Analyst
                         bh
Agency/Co.
                         Darnell
Date Performed
                         1/5/2006
Analysis Time Period
                         PM
Highway
                         State Route 76
From/To
                         Pankey to Couser
Jurisdiction
                         County
Analysis Year
                         Existing+Project (plus 1 car)
Description 051008 - Gregory Canyon
                                   _Input Data_
Highway class Class 1
Shoulder width
                      6.0
                              ft
                                     Peak-hour factor, PHF
                                                                 0.90
Lane width
                      12.0
                              ft ·
                                     % Trucks and buses
                                                                21
Segment length
                      1.5
                                     % Recreational vehicles
                             mi
                                                                 ٥
Terrain type
                     Level
                                     % No-passing zones
                                                                 100
Grade: Length
                              mi
                                     Access points/mi
                                                                         /mi
        Up/down
                              윰
                             1317
                                       veh/h 😽
Two-way hourly volume, V
Directional split
                        57
                                   43
                            Average Travel Speed
Grade adjustment factor, fG
                                                1.00
PCE for trucks, ET
                                                1.1
PCE for RVs, ER
                                                1.0
Heavy-vehicle adjustment factor,
                                                0.979
Two-way flow rate, (note-1) vp
                                                1494
                                                       pc/h
Highest directional split proportion (note-2) 852
                                                       pc/h
Free-Flow Speed from Field Measurement:
Field measured speed, SFM
                                                       mi/h
Observed volume, Vf
                                                       veh/h
Estimated Free-Flow Speed:
Base free-flow speed, BFFS
                                                60.0
                                                       mi/h
Adj. for lane and shoulder width, fLS
                                               0.0
                                                       mi/h
Adj. for access points, fA
                                               1.0
                                                       mi/h
Free-flow speed, FFS
                                               59.0
                                                       mi/h
Adjustment for no-passing zones, fnp
                                               1.6
Average travel speed, ATS
                                               45.8
                                                       mi/h
                          Percent Time-Spent+Following
Grade adjustment factor, fG
                                                             1.00
PCE for trucks, ET
                                                             1.0
PCE for RVs, ER
                                                             1.0
Heavy-vehicle adjustment factor, fHV
                                                             1.000
Two-way flow rate, (note-1) vp
                                                             1463
                                                                    pc/h
Highest directional split proportion (note-2)
                                                             834
Base percent time-spent-following, BPTSF
                                                             72.4
Adj.for directional distribution and no-passing zones, fd/np 7.7
Percent time-spent-following, PTSF
                                                             0.08
             Level of Service and Other Performance Measures
Level of service, LOS
                                                             E
Volume to capacity ratio, v/c
                                                             0.47
Peak 15-min vehicle-miles of travel, VMT15
                                                             549
                                                                     veh-mi
Peak-hour vehicle-miles of travel, VMT60
                                                             1976
                                                                     veh-mi
Peak 15-min total travel time, TT15
                                                             12.0
                                                                     veh-h
```

APPENDIX F Near Term (No Project) Worksheets

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	<1>	0	0	<1	1	1	2>	0	1	2	1
ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50	50	50	50		50	50	50
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Satd. Flow (prot)	0	1776	0	0	1827	1583	1770	3497	0	1770	3539	1583
Fit Permitted		0.968			0.981		0.950			0.950		
Satd. Flow (perm)	0	1776	0	0	1827	1583	1770	3497	0	1770	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		7				76		10				130
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		556			748			915			882	
Travel Time (s)		12.6			17.0			20.8			20.0	
Volume (vph)	298	98	48	89	142	70	40	670	60	67	585	120
Adj. Flow (vph)	324	107	52	97	154	76	43	728	65	73	636	130
Lane Group Flow (vph)	0	483	0	0	251	76	43	793	0	73	636	130
Turn Type	Split			Split		Perm	Prot			Prot		Over
Protected Phases	· 6	6		2	2		7	4		3	8	6
Permitted Phases						2						
Detector Phases	6	6		2	2	2	7	4		3	8	6
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	20.0	20.0		20.0	20.0	20.0	8.0	20.0		8.0	20.0	20.0
Total Split (s)	33.0	33.0	0.0	20.0	20.0	20.0	10.0	27.0	0.0	10.0	27.0	33.0
Total Split (%)	37%	37%	0%	22%	22%	22%	11%	30%	0%	11%	30%	37%
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	0.5	0.5		0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	None		Coord	Coord		None	None		None	None	None
Act Effct Green (s)		26.4			21.2	21.2	5.9	22.4		6.0	24.4	26.4
Actuated g/C Ratio		0.29			0.24		0.07	0.25		0.07	0.27	0.29
v/c Ratio		0.92			0.58	0.18	0.37	0.91		0.62	0.66	0.23
Uniform Delay, d1		30.3			31.8	0.0	42.5	31.6		42.0	29.2	0.0
Delay		35.9			40.5		40.8	37.9		40.9	22.3	9.9
LOS		D			D		D	D		D	C	Α
Approach Delay		35.9			33.0			38.1			22.0	
Approach LOS		D			С			D			С	

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.92 Intersection Signal Delay: 31.6 Intersection Capacity Utilization 79.8%

Intersection LOS: C
ICU Level of Service C

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	<1>	0	0	<1	1	1	2>	0	1	2	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50	50	50	50		50	50	50
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Satd. Flow (prot)	0	1765	0	0	1833	1583	1770	3493	0	1770	3539	1583
Flt Permitted		0.970			0.984		0.950			0.950		
Satd. Flow (perm)	0	1765	0	0	1833	1583	1770	3493	0	1770	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		11				39		11				303
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		556			748			915			882	
Travel Time (s)		12.6			17.0			20.8			20.0	
Volume (vph)	233	85	64	59	119	36	80	825	75	61	790	279
Adj. Flow (vph)	253	92	70	64	129	39	87	897	82	66	859	303
Lane Group Flow (vph)	0	415	0	0	193	39	87	979	0	66	859	303
Turn Type	Split			Split		Perm	Prot			Prot		Over
Protected Phases	6	6		2	2		7	4		3	8	6
Permitted Phases						2					_	_
Detector Phases	6	6		2	2	2	7	4		3	8	6
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	20.0	20.0		20.0	20.0	20.0	8.0	20.0		8.0	20.0	20.0
Total Split (s)	29.0	29.0	0.0	20.0	20.0	20.0	10.0	31.0	0.0	10.0	31.0	29.0
Total Split (%)	32%	32%	0%	22%	22%	22%	11%	34%	0%	11%	34%	32%
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	0.5	0.5		0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	None		Coord	Coord		None	None		None	None	None
Act Effct Green (s)		23.1			20.2	20.2	6.0	26.7		5.9	26.7	23.1
Actuated g/C Ratio		0.26			0.22	0.22	0.07	0.30		0.07	0.30	0.26
v/c Ratio		0.90			0.47	0.10	0.74	0.94		0.57	0.82	0.48
Uniform Delay, d1		31.4			30.9	0.0	42.4	30.5		41.9	29.4	0.0
Delay		38.2			33.2	10.9	61.8	39.6		44.5	19.7	9.3
LOS		D			С	В	Ε	D		D	B	Α
Approach Delay		38.2			29.5			41.4			18.5	
Approach LOS		D			С			D			В	
totamantina Commen												

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.94 Intersection Signal Delay: 30.4

Intersection Capacity Utilization 77.9%

Intersection LOS: C
ICU Level of Service C

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	<1	1	0	0	0	0	1	1	1	1	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50					50	50	50	50	
Trailing Detector (ft)	0	0	0					0	0	0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Satd. Flow (prot)	0	1770	1583	0	0	0	0	1863	1583	1770	1863	0
Fit Permitted		0.950								0.950		
Satd. Flow (perm)	0	1770	1583	0	0	0	0	1863	1583	1770	1863	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			385						567			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		443			610			882			1345	
Travel Time (s)		10.1			13.9			20.0			30.6	_
Volume (vph)	295	0	501	0	0	0	0	630	460	285	422	0
Adj. Flow (vph)	369	0	626	0	0	0	0	788	575	356	528	0
Lane Group Flow (vph)	0	369	626	0	0	0	0	788	575	356	528	0
Turn Type	Perm		Perm						Perm	Prot	_	
Protected Phases		6						4	_	3	8	
Permitted Phases	6		6						4	_	_	
Detector Phases	6	6	6					4	4	3	8	
Minimum Initial (s)	4.0	4.0	4.0					4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0					20.0	20.0	8.0	20.0	0.0
Total Split (s)	27.0	27.0	27.0	0.0	0.0	0.0	0.0	43.0	43.0	20.0	63.0	0.0
Total Split (%)	30%	30%	30%	0%	0%	0%	0%	48%	48%	22%	70%	0%
Yellow Time (s)	3.5	3.5	3.5					3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5					0.5	0.5	0.5	0.5	
Lead/Lag								Lag	Lag	Lead		
Lead-Lag Optimize?								Yes	Yes	Yes	None	
Recall Mode	Coord	Coord						None 39.0	None 39.0	None 16.0	59.0	
Act Effct Green (s)		23.0	23.0					0.43	0.43	0.18	0.66	
Actuated g/C Ratio		0.26	0.26					0.43	0.43	1.13	0.43	
v/c Ratio		0.82	0.91					25.0	0.57	37.0	7.4	
Uniform Delay, d1		31.5	12.0					25.0 46.7	8.9	90.8	14.2	
Delay		38.8	23.3					40.7 D	0. 9 A	90.0 F	14.2 B	
LOS		D	С					30.8	^	-	45.0	
Approach Delay		29.0						30.6 C			43.0 D	
Approach LOS		С						U			J	
Interception Cummany												

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2: and 6:SETL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.13

Intersection Signal Delay: 34.1 Intersection Capacity Utilization 91.6% Intersection LOS: C
ICU Level of Service E

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	<1	1	0	0	0	0	1	1	1	1	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50					50	50	50	50	
Trailing Detector (ft)	0	0	0					0	0	0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Satd. Flow (prot)	0	1770	1583	0	0	0	0	1863	1583	1770	1863	0
Flt Permitted		0.950								0.950		
Satd. Flow (perm)	0	1770	1583	0	0	0	0	1863	1583	1770	1863	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			239						315			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		443			610			882			1345	
Travel Time (s)		10.1			13.9			20.0			30.6	_
Volume (vph)	388	0	441	0	0	0	0	830	350	396	785	0
Adj. Flow (vph)	408	0	464	0	0	0	0	874	368	404	801	0
Lane Group Flow (vph)	0	408	464	0	0	0	0	874	368	404	801	0
Turn Type	Perm		Perm						Perm	Prot	_	
Protected Phases		6						4		3	8	
Permitted Phases	6		6						4	_	_	
Detector Phases	6	6	6					4	4	3	8	
Minimum Initial (s)	4.0	4.0	4.0					4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0					20.0	20.0	8.0	20.0	0.0
Total Split (s)	24.0	24.0	24.0	0.0	0.0	0.0	0.0	41.0	41.0	25.0	66.0	0.0
Total Split (%)	27%	27%	27%	0%	0%	0%	0%	46%	46%	28%	73%	0%
Yellow Time (s)	3.5	3.5	3.5					3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5					0.5	0.5	0.5	0.5	
Lead/Lag								Lag	Lag	Lead		
Lead-Lag Optimize?								Yes	Yes	Yes	Niono	
Recall Mode	Coord	Coord						None	None	None 21.0	None 62.0	
Act Effct Green (s)		20.0	20.0					37.0	37.0	0.23	0.69	
Actuated g/C Ratio		0.22	0.22					0.41	0.41	0.23 0.98	0.69	
v/c Ratio		1.04	0.86					1.14	0.44 2.3	34.3	7.6	
Uniform Delay, d1		35.0	15.8					26.5	∠.3 11.3	28.5	17.5	
Delay		82.0	25.0					93.7 F		20.5 C	17.5 B	
LOS		F	С						В	C	21.2	
Approach Delay		51.7						69.3 E			21.2 C	
Approach LOS		D						_			C	
Lateran antique Occurrences												

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2: and 6:SETL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.14 Intersection Signal Delay: 47.2

Intersection Capacity Utilization 101.0%

Intersection LOS: D
ICU Level of Service F

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	0	0	0	<1	1	1	1	0	0	1	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)				50	50	50	50	50			50	50
Trailing Detector (ft)				0	0	0	0	0			0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Satd. Flow (prot)	0	0	0	0	1770	1583	1770	1863	0	0	1863	1583
Flt Permitted	•				0.950		0.950					
Satd. Flow (perm)	0	0	0	0	1770	1583	1770	1863	0	0	1863	1583
Right Turn on Red	_	_	Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						355						201
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		550			849			1345			698	
Travel Time (s)		12.5			19.3			30.6			15.9	
Volume (vph)	0	0	0	295	0	313	425	419	0	0	431	151
Adj. Flow (vph)	Ō	0	0	393	0	417	567	559	0	0	575	201
Lane Group Flow (vph)	Ō	0	0	0	393	417	567	559	0	0	575	201
Turn Type	_			Perm		Perm	Prot					Perm
Protected Phases					2		7	4			8	
Permitted Phases				2		2						8
Detector Phases				2	2	2	7	4			8	8
Minimum Initial (s)				4.0	4.0	4.0	4.0	4.0			4.0	4.0
Minimum Split (s)				20.0	20.0	20.0	8.0	20.0			20.0	20.0
Total Split (s)	0.0	0.0	0.0	28.0	28.0	28.0	35.0	62.0	0.0	0.0	27.0	27.0
Total Split (%)	0%	0%	0%	31%	31%	31%	39%	69%	0%	0%	30%	30%
Yellow Time (s)	•			3.5	3.5	3.5	3.5	3.5			3.5	3.5
All-Red Time (s)				0.5	0.5	0.5	0.5	0.5			0.5	0.5
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Recall Mode				Coord	Coord	Coord	None	None			None	None
Act Effct Green (s)					24.6	24.6	30.3	57.3			23.0	23.0
Actuated g/C Ratio					0.27	0.27	0.34	0.64			0.26	0.26
v/c Ratio					0.81	0.60	0.95	0.47			1.21	0.36
Uniform Delay, d1					30.5	3.7	29.0	8.4			33.5	0.0
Delay					38.7	5.7	27.8	15.7			123.3	4.3
LOS					D	Α	С	В			F	Α
Approach Delay					21.7			21.8			92.5	
Approach LOS					С			С			F	
, apriodori ao o												

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.21

Intersection Signal Delay: 42.0 Intersection Capacity Utilization 93.4%

Intersection LOS: D
ICU Level of Service E

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	0	0	0	<1	1	1	1	0	0	1	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)				50	50	50	50	50			50	50
Trailing Detector (ft)				0	0	0	0	0			0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Satd. Flow (prot)	0	0	0	0	1770	1583	1770	1863	0	0	1863	1583
Fit Permitted					0.950		0.950					
Satd. Flow (perm)	0	0	0	0	1770	1583	1770	1863	0	0	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						305						246
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		550			849			1345			698	
Travel Time (s)		12.5			19.3			30.6			15.9	
Volume (vph)	0	0	0	579	0	450	663	570	0	0	818	317
Adj. Flow (vph)	0	0	0	629	0	489	698	600	0	0	880	345
Lane Group Flow (vph)	0	0	0	0	629	489	698	600	0	0	880	345
Turn Type				Perm		Perm	Prot					Perm
Protected Phases					2		7	4			8	
Permitted Phases				2		2						8
Detector Phases				2	2	2	7	4			8	8
Minimum Initial (s)				4.0	4.0	4.0	4.0	4.0			4.0	4.0
Minimum Split (s)				20.0	20.0	20.0	8.0	20.0			20.0	20.0
Total Split (s)	0.0	0.0	0.0	31.0	31.0	31.0	28.0	59.0	0.0	0.0	31.0	31.0
Total Split (%)	0%	0%	0%	34%	34%	34%	31%	66%	0%	0%	34%	34%
Yellow Time (s)				3.5	3.5	3.5	3.5	3.5			3.5	3.5
All-Red Time (s)				0.5	0.5	0.5	0.5	0.5			0.5	0.5
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Recall Mode				Coord	Coord		None	None			None	None
Act Effct Green (s)					27.0	27.0	24.0	55.0			27.0	27.0
Actuated g/C Ratio					0.30	0.30	0.27	0.61			0.30	0.30
v/c Ratio					1.18	0.71	1.48	0.53			1.57	0.53
Uniform Delay, d1					31.5	9.7	33.0	10.0			31.5	6.8
Delay					114.1	10.5	184.9	19.8			209.4	8.1
LOS					F	В	F	В			F	Α
Approach Delay					68.8			108.6			152.7	
Approach LOS					E			F			F	

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:, Start of Green

Natural Cycle: 130

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.57

Intersection Signal Delay: 111.2 Intersection LOS: F
Intersection Capacity Utilization 129.8% ICU Level of Service H

	4	Merge Analysis	·				
D 1	bh						
Analyst:	Darnell						
Agency/Co.: Date performed:	11/17/2005	ń					
Analysis time period:	AM Peak	,					
Freeway/Dir of Travel:		shound On-Ramr					
Junction:		n/State Route					
Jurisdiction:	County SD						
		(no project)					
Analysis Year: Description: 051008 -							
		Freeway Data					
		rreeway baca					
Type of analysis		Mei	rge				
Number of lanes in free		4					
Free-flow speed on free	way	70.			mph		
Volume on freeway		4 60	<i>)</i> ()		vph		
		On Kamp Data					
Side of freeway		Ric	ght				
Number of lanes in ramp	•	1					
Free-flow speed on ramp)	35	.0		mph		
Volume on ramp		57	5		vph		
Length of first accel/c	lecel lane	50)		rt		
Length of second accel/					ft		
	Adjacent	Kamp Data (1	t one	exists	5}		
Does adjacent ramp exis	st?	No					
Volume on adjacent Ramp					abu		
Position of adjacent Ra							
Type of adjacent Ramp							
Distance to adjacent Ra	imp				1t		
		pc/h Under B	ase C	onditio	ons		
	100101011 00						
Junction Components		Freeway		Kamp		Adjacent Ramp	
Volume, V (vph)		4600		576		-	vph
Peak-hour factor, PHF		0.90		0.90			•
Peak 15-min volume, v15		1278		160			V
Trucks and buses	,	10		10			8
		2		2			*
Recreational vehicles		Level		Level			
Terrain type: Grade		20.442	85		%	%	
Length			mi		mi	m	
Trucks and buses PCE, I	2 TP	1.5		1.5			
		1.2		1.2			
Recreational vehicle PC		0.949		0.949			
Heavy vehicle adjustmen		1.00		1.00			
Driver population factor Flow rate, vp)I , LE	5387		675			pcph
riow race, vp							
	Estimati	on of V12 Mer	ge Ar	eas			-
L =		(Equation	25-2	or 25	-3)		
£Q ₽ ==	0.293	Using Equ	ation	n 4			
FM	v 15) =	1577 pc/h					
	F FM	1377 pc/1					
		pacity Checks	<u></u>				
					LOS F		
	Actual 6062		idiii		цоз е. No	-	
V	0002	5000					
FO	2252	4600			No		
v R12	2232	4000					
Level	of Service	e Determinatio	n (if	f not F)		
Density, $D = 5.475 + 0$					=	19.6 p	oc/mi/ln
- R	R	12		A			
Level of service for r	amp-ireeway	/ Junction are	:a5 01	ւ ւուլա	ence	D	

```
Merge Analysis
Analyst:
                         na
Agency/Co.: Darnell
Date performed: 11/17/2005
Analysis time period: PM Peak
Freeway/Dir of Travel: I-15 Northbound On-Ramp
Junction: I-15 North/State Route 76
Jurisdiction: County SD/Caitrans
Analysis Year: Near Term (no project)
Description: 051008 - Gregory Canyon
                               ___rreeway uata__
Type of analysis
Number of lanes in freeway
                                               70.0
                                                              mph
Free-flow speed on freeway
                                               4600
                                                              vph
Volume on freeway
                                ___on kamp bata__
                                               Right
Side of freeway
Number of lanes in ramp
                                               35.0
                                                              mph
Free-flow speed on ramp
                                               980
                                                              vph
Volume on ramp
Length of first accel/decel lane
                                               500
                                                               it
                                                               ft
Length of second accel/decel lane
                      _____Adjacent Kamp Data (ii one exists)___
Does adjacent ramp exist?
                                              No
                                                               vori
volume on adjacent Ramp
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Kamp
                  Conversion to pc/h Under Base Conditions
Junction Components
                                          rreeway
                                                                   Adjacent
                                         4600
                                                      980
                                                                              vph
Volume, V (vph)
                                                      0.90
Peak-hour factor, PHr
                                         0.90
                                                                              ٧
Peak 15-min volume, v15
                                         1278
                                                      272
                                         10
                                                      10
Trucks and buses
                                                      2
                                          2
kecreational vehicles
                                          Level
                                                      Level
Terrain type:
    Grade
                                                                            mı
     Length
                                         1.5
                                                      1.5
Trucks and buses PCE, ET
Recreational vehicle PCE, ER
                                         1.2
                                                     1.2
                                         0.949
                                                      0.949
neavy venicle adjustment, IHV
                                                      1.00
Driver population factor, fP
                                         1.00
                                         5387
                                                      1148
                                                                              pcph
Flow rate, vp
                      ______Estimation of Vi2 Merge Areas__
                   Γ =
                                      (Equation 25-2 or 25-3)
                    ĽŲ
                   P =
                          0.234 Using Equation 4
                    FM
                    v = v (P) = 1258 pc/h
                    12 F
                             FM
                              Capacity Cnecks___
                                                            LOS F?
                                            Maximum
                             Actual
                                            9600
                                                             No
                             6535
      FO
                                           4600
                                                             No
                             2406
                 Level of Service Determination (if not F)___
 Density, D = 5.475 + 0.00734 \text{ v} + 0.0078 \text{ v} - 0.00627 \text{ L} = 20.6 \text{ pc/mi/ln}}{R} R 12 A
 Level of service for ramp-freeway junction areas of influence C
```

```
Diverge Analysis___
Analyst:
                      bb
                       Darnell
Agency/Co.:
                       11/17/2005
Date performed:
Analysis time period: AM
Freeway/Dir of Travel: I-15 Northbound Off
                      I-15 North Off/State Route 76
Junction:
Jurisdiction: County SD/Caltrans
Analysis Year: Near term (no project)
Description: 051008 - Gregory Canyon
                         treeway Data_
Type of analysis
Number of lanes in freeway
                                          70.0
                                                         mph
Free-flow speed on freeway
                                           4600
Volume on freeway
                             Off Kamp Data_
Side of freeway
                                           Right
Number of lanes in ramp
                                           35.0
Free-Flow speed on ramp
                                           608
                                                         vph
Volume on ramp
Length of first accel/decel lane
                                           500
                                                         ft
                                                         ft
Length of second accel/decel lane
                     ___Adjacent Kamp Data (it one exists)__
                                          No
Does adjacent ramp exist?
Volume on adjacent ramp
                                                         vph
Position of adjacent ramp
Type of adjacent ramp
                                                         İτ
Distance to adjacent ramp
                   Conversion to pc/h Under Base Conditions_
                                     rreeway
                                                 катр
Junction Components
                                                             Ramp
                                                 608
                                                                       vph
                                      4600
Volume, V (vph)
Peak-hour factor, PHF
                                      0.90
                                                 0.90
                                      1278
                                                 169
Peak 15-min volume, v15
                                                                       જુ
                                      21
                                                  21
Trucks and buses
                                     Ü
                                                 U
kecreational vehicles
                                      Level
Terrain type:
                                                 Level
                                             % 0.00
                                      0.00
    Grade
                                      0.00
                                             mi 0.00
                                                                     ma
    Length
                                      1.5
                                                 1.5
Trucks and buses PCE, ET
Recreational vehicle PCE, ER
                                      1.2
                                                 1.2
                                                 0.905
Heavy vehicle adjustment, tHV
                                      0.905
Driver population factor, fP
                                      1.00
                                                 1.00
                                      5648
                                                 746
                                                                       pcph
Flow rate, vp
                       Estimation of VIZ Diverge Areas
                 L =
                                    (Equation 25-8 or 25-9)
                  EQ
                  P =
                        0.436
                                  Using Equation 8
                  FD
                  v = v + (v - v) P = 2883 pc/h
                  12 R F R FD
                             Capacity Checks
                                                       LOS F?
                          Actual
                                       Maximum
                                        9600
                                                       No
                          5648
                                        4400
                                                       No
                          2883
                                        9600
                          4902
                                                        No
      FO
          F
              R
                           /46
                                        2000
      R
               Level of Service Determination (if not F)
                       D = 4.252 + 0.0086 v - 0.009 L = 24.5 pc/mi/ln
                       R 12 D
Level of service for ramp-freeway junction areas of influence {\tt C}
```

```
Diverge Analysis_
Analyst:
                       Darnell
Agency/Co.:
                       11/17/2005
Date performed:
Analysis time period: PM
Freeway/Dir of Travel: 1-15 Northbound Off
                       I-15 North Off/State Route 76
Junction:
Junction: I-15 North Off/State Rourisdiction: County SD/Caltrans
Analysis rear: Near term (no project)
Description: 051008 - Gregory Canyon
                             ____rreeway bata_
Type of analysis
                                            Diverge
Number of lanes in freeway
                                            70.0
Free-flow speed on freeway
                                                           mph
Volume on freeway
                            ____Off Kamp Data__
Side of freeway
Number of lanes in ramp
                                            35.0
                                                           mph
Free-Flow speed on ramp
                                                           vph
Volume on ramp
                                            1029
Length of first accel/decel lane
                                            500
                                                           rt
Length of second accel/decel lane
                                                           ft
               ___Adjacent Kamp Data (if one exists)_
Does adjacent ramp exist?
                                                           vpn
volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
                                                           İτ
               ____Conversion to pc/h Under Base Conditions_
                                                               Adlacent
Junction Components
                                       Freeway
                                                   kamp
                                                               Ramp
                                                   1029
Volume, V (vph)
                                       4600
                                                                         vph
                                                   0.90
Peak-hour factor, PHF
                                       1278
                                                   286
Peak 15-min volume, v15
                                       21
                                                   21
Trucks and buses
                                       U
                                                   ( )
Recreational vehicles
                                               Level
% 0.00
                                       Level
Terrain type:
                                       0.00
    Grade
                                               mi 0.00
                                       0.00
    Length
                                                           mı
                                       1.5
                                                  1.5
Trucks and buses PCE, ET
Recreational vehicle PCE, ER
                                       1.2
                                                   1.2
                                       0.905
                                                   0.905
Heavy venicle adjustment, IHV
                                                   1.00
Driver population factor, fP
                                       1.00
                                       5648
                                                   1263
                                                                         pcph
Flow rate, vp
                        Estimation of VIZ Diverge Areas_
                  L =
                                     (Equation 25-8 or 25-9)
                   ЕQ
                        0.436 Using Equation 8
                  P =
                   FD
                  v = v + (v - v) P = 3175 pc/h
                   12 R F R FD
                             ___Capacity Checks_
                                                         LOS F?
                           Actual
                                         Maximum
                                                         No
                           5648
                                         9600
      Fi
                                         4400
                           3175
                                                          No
      17
                                          9600
                            4385
      FO F R
                                         2000
                                                         No
                            1263
                Level of Service Determination (if not F)____
                       D = 4.252 + 0.0086 \text{ v} - 0.009 \text{ L} = 27.1 \text{ pc/mi/ln}
Level of service for ramp-freeway junction areas of influence C
```

	I*	erge Anaiysis_			
Analyst:	bh				
Agency/Co::	Darnell				
Date performed:	11/17/2005)			
Analysis time period					
Freeway/Dir of Trave		bound On-Kamp			
Junction:		/State Route 7	ŝ		
Jurisdiction:	County SD/				
Anaiysis mear:	near term	(no project)			
Description: 051008	- Gregory Can	yon			
		rreeway uata			
Type of analysis		Merge	9		
Number of lanes in f	-	4 20 0		mmk.	
Free-flow speed on f	reeway	70.0		mph vph	
Volume on freeway		4 500		vpn	
		on катр раса			
Side of freeway		Righ	t		
Number of lanes in r	amp	1			
Free-flow speed on r	amp	35.0		mph	
Volume on ramp		745		ифи	
Length of first acce		500		it C	
Length of second acc	el/decel lane			ft	
	Aajacent	катр vata (11 d	one exist	s)	
Does adjacent ramp e		No			
volume on adjacent K				abu	
Position of adjacent					
Type of adjacent Ram					
Distance to adjacent	катр			ΣŢ	
	Conversion to	pc/h Under Bas	e Conditi	ions	
Junction Components		Freeway	катр		Adjacent
dunction components					Ramp
Volume, V (vph)		4500	745		vph
Peak-nour factor, Fh	ir	0.90	U.90		
Peak 15-min volume,	v15	1250	207		V
Trucks and buses		10	10		8
kecreational vehicle	: S	∠	2		*
Terrain type:		Level	Level		•
Grade		8		8	8
rendtu			1.	шт	mı
Trucks and buses PCE		1.5	1.5		
Recreational vehicle		1.2	1.2		
Heavy venicle adjust		U.949	0.949		
Driver population fa	actor, fP	1.00	1.00		b
Flow rate, vp		5270	872		pcph
	Estimati	on of viz Merge	Areas		
L	=	(Equation 2	5-2 or 2	5-3)	
	= 0.268	Using Equat	ion 4		
Đ	FM .				
	= v (P) = 12 F FM	1412 bc\u			
	ı a:	pacity Unecks			
				TOC D	
v	Actual 6142	Maximum 9600	1	LOS F1	•
v FO	0145	2000			
r O V	2285	4600		No	
V K⊥Z	2200	1000			
11.1.2					
Les	vel of Service	Determination	(if not	F }	
Density, $D = 5.4/5$	+ ()_()()/34 v +	0.0078 v - C).00627 L	_ =	19.8 pc/mi/lr
R	R	12		A	
Level of service for	r ramp-freeway	junction areas	s of infl	uence	В

		merge Analysis_			
N3	bh				
nalyst:	Darnell				
.gency/Co.: Date performed:	11/17/2005	D			
Analysis time period:					
reeway/Dir of Travel		nbound On-Ramp			
Junction:		n/State Route 7	6		
Murisdiction:	County SD				
maiysis Year:		(no project)			
Description: 051008 -					
	, <u>.</u>	rreeway uata			
		_			
ype of analysis		Merg	e		
number of lanes in Ire		4		and be	
ree-flow speed on fre	eway:	70.0 4500		mph vph	
olume on freeway		4300		4 P11	
		on kamp bata			
Side of freeway		Righ	t		
lumber of lanes in rai	mp	1			
ree-flow speed on rai		35.0		mph	
olume on ramp	-	746		vph	
ength of tirst accel	/decel lane	500		it	
ength of second acce				ft	
	Adlacent	kamp bata (11	one exis	[5]	
		-			
Does adjacent ramp ex Volume on adjacent Ka		No		vph	
Position of adjacent	-				
Type of adjacent Ramp					
istance to adjacent				Íτ	
_					
C	onversion to	pc/h Under Bas	se Condit.	ions	
Junction Components		rreeway	катр	Adja Ramp	acent O
Volume, V (vph)		4500	746		abp
reak-hour factor, FHF		U.9U	U.9U		
Peak 15-min volume, v	15	1250	207		V
Trucks and buses		10	10		ક્ર
kecreational vehicles		∠	∠		*
Terrain type:		Level	Level		_
Grade		é	\$	8	8
Length			1.1.	mı	m1
Trucks and buses PCE,	ET	1.5	1.5		
Recreational vehicle		1.2	1.2		
Heavy venicie adjustm		0.949	0.949		
Driver population fac	tor, fP	1.00	1.00		
Flow rate, vp		5270	874		paph
	bstimati	on of viz Merge	e Areas		
L	=	(Equation 2	25-2 or 2	5-3)	
E/2	2	-			
P FM		Using Equat	ion 4		
		1411 pc/h			
	F FM				
	Ca	pacity Unecks_			
	Actual	Maximum	7)	LOS F?	
v	Actual 6144	. MAXIMUI UUUC		NO E.	
FO		- * * *			
٧	2285	4600		No	
kı2					
a V. A. An					
Leve	el of Service	e Determination	(if not	F}	
Density, D = 5.4/5 +	0.00/34 v 4	- 0.0078 v = -	U.00627 [, = 19.	8 pc/mi/l
Density, D = 5.475 +		12		Α	F - 3 3
Level of service for				uence B	

```
Diverge Analysis
Analyst:
                      Darnell
Agency/Co.:
Date performed:
                      11/17/2005
Analysis time period: AM
Freeway/Dir of Travel: 1-15 Southbound Off
Jurisdiction:
                       I-15 South Off/State Route 76
                     County SD/Caltrans
                      Near Term (no project)
Analysis rear:
Description: 051008 - Gregory Canyon
                            rreeway bata___
                                          Diverge
Type of analysis
Number of tames in freeway
                                          70.0
                                                        mph
Free-flow speed on freeway
Volume on freeway
                                          4600
                                                        vph
                          ____OII kamp bata__
Side of freeway
                                          Right
Number of tames in ramp
                                          35.0
                                                        mph
Free-Flow speed on ramp
                                          796
                                                        vph
Volume on ramp
                                                        Ιt
Length of first accel/decel lane
                                          500
Length of second accel/decel lane
               Adjacent kamp uata (11 one exists)_
Does adjacent ramp exist?
                                                        nav
volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
                  Conversion to pc/h Under Base Conditions_
                                                катр
                                     rreeway
Junction Components
                                                            Ramp
                                                796
                                                                      vph
                                     4600
Volume, V (vph)
                                                0.90
reak-hour factor, FHr
                                     1278
                                                 221
Peak 15-min volume, v15
                                     0
Trucks and buses
kecreational vehicles
                                                U
Terrain type:
                                     Level
                                                Level
                                     0.00 % 0.00
    Grade
                                            mi U.UU
                                                                    mı
                                     0.00
    Length
                                             1.5
Trucks and buses PCE, ET
                                     1.5
                                                1.2
Recreational vehicle PCE, ER
                                     1.2
Heavy venicle adjustment, IHV
                                     1.000
                                                 1.000
Driver population factor, fP
                                     1.00
                                                 1.00
                                                 884
                                                                     paph
                                     5111
Flow rate, vp
                      ___Estimation of VIZ Diverge Areas_
                 L =
                                   (Equation 25-8 or 25-9)
                  ೬೪
                       0.436 Using Equation 8
                  FD
                 v = v + (v - v) P = 2/2/ pc/n
12 R F R FD
                           ___uapacity unecks____
                                       Maximum
                                                       LOS F?
                                       9600
                          2111
      Fi F
                          2727
                                       4400
                                                       No
                          4227
                                       9600
                                                       No
      FO
                                                       No
                                        2000
                          884
                Level of Service Determination (if not r)____
                       D = 4.252 + 0.0086 v - 0.009 L = 23.2 pc/mi/ln
                                        12
                                                    12
 Level of service for ramp-freeway junction areas of influence C
```

```
__uiverge Analysis__
Analyst:
                       Darneii
Agency/Co.:
                       11/17/2005
Date performed:
Analysis time period: PM
Freeway/Dir of Travel: 1-15 Southbound Off
                       I-15 South Off/State Route 76
Junction:
Junction: I-15 South Off/State
Jurisdiction: County SD/Caltrans
                      Near Term (No project)
Analysis rear:
Description: 051008 - Gregory Canyon
                           rreeway uata____
Type of analysis
                                           Diverge
Number of lanes in freeway
                                           70.0
                                                         mph
Free-flow speed on freeway
Volume on freeway
                                           4600
                                                         vph
                             ___OII kamp bata
Side of freeway
                                           Right
Number of tanes in ramp
                                           35.0
Free-Flow speed on ramp
                                           829
                                                         vph
Volume on ramp
Length of first accel/decel lane
                                           500
                                                          ĒΨ
Length of second accel/decel lane
                      Adjacent kamp bata (ii one exists)_
Does adjacent ramp exist?
volume on adjacent ramp
                                                          ngv
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
                 __Conversion to pc/h Under Base Conditions__
                                                             Adjacent
                                      rreeway
                                                 катр
Junction Components
                                                             Ramp
                                                 829
                                     4600
                                                                       vph
Volume, V (vph)
reak-hour factor, PHF
                                      0.90
                                                 0.90
                                                  230
Peak 15-min volume, v15
                                      1278
                                     0
Trucks and buses
kecreational venicles
                                                  U
Terrain type:
                                      Level
                                                 Level
                                     0.00 % 0.00
   Grade
                                     0.00 mi 0.00
1.5 1.5
                                                                     mд
    Length
Trucks and buses PCE, ET
                                                 1.2
Recreational vehicle PCE, ER
                                     1.2
heavy venicie adjustment, thy
                                      1.000
                                                  1.000
Driver population factor, fP
                                      1.00
                                                 1.00
                                                  921
                                                                       pcph
                                      5111
Flow rate, vp
                     ___Estimation of VIZ Diverge Areas_
                                   (Equation 25-8 or 25-9)
                  ьQ
                        0.436 Using Equation 8
                  FD
                 v = v + (v - v) = 2/48 pc/h
12 R F R FD
                           ____capacity Unecks_
                           Actual
                                        Maximum
                                                        LOS F?
                                        9600
                           5111
      Fi
          F
                                       4400
                           2748
                                                        No
                           4190
                                       9600
                                                        No
      FO F
                                        2000
                                                        NO
                           921
                Level of Service Determination (if not b)__
                       D = 4.252 + 0.0086 v - 0.009 L = 23.4 pc/mi/ln
Density,
                                         12
Level of service for ramp-freeway junction areas of influence C
```

APPENDIX G
Near Term (With Project) Worksheets

Long Croup	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Group Lane Configurations	0	<1>	0	0	<1	1	1	2>	0	1	2	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	1.5	50	50	50	50	50		50	50	50
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	0
Turning Speed (mph)	15		9	15	_	9	15		9	15		9
Satd. Flow (prot)	0	1776	Ō	0	1827	1583	1770	3497	0	1770	3539	1583
Flt Permitted	•	0.968			0.981		0.950			0.950		
Satd. Flow (perm)	0	1776	0	0	1827	1583	1770	3497	0	1770	3539	1583
Right Turn on Red	•		Yes	_		Yes			Yes			Yes
Satd. Flow (RTOR)		7				76		10				130
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		556			748			915			882	
Travel Time (s)		12.6			17.0			20.8			20.0	
Volume (vph)	298	98	48	89	142	70	40	678	60	67	593	120
Adj. Flow (vph)	324	107	52	97	154	76	43	737	65	73	645	130
Lane Group Flow (vph)	0	483	0	0	251	76	43	802	0	73	645	130
Turn Type	Split		_	Split		Perm	Prot			Prot		Over
Protected Phases	6	6		2	2		7	4		3	8	6
Permitted Phases						2						
Detector Phases	6	6		2	2	2	7	4		3	8	6
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	20.0	20.0		20.0	20.0	20.0	8.0	20.0		8.0	20.0	20.0
Total Split (s)	33.0	33.0	0.0	20.0	20.0	20.0	10.0	27.0	0.0	10.0	27.0	33.0
Total Split (%)	37%	37%	0%	22%	22%	22%	11%	30%	0%	11%	30%	37%
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	0.5	0.5		0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	None		Coord	Coord	Coord	None	None		None	None	None
Act Effct Green (s)		26.4			21.2	21.2	5.9	22.4		6.0	24.4	26.4
Actuated g/C Ratio		0.29			0.24	0.24	0.07	0.25		0.07	0.27	0.29
v/c Ratio		0.92			0.59	0.18	0.37	0.91		0.62	0.67	0.23
Uniform Delay, d1		30.3			31.9	0.0	42.5	31.7		42.0	29.2	0.0
Delay		35.9			40.5	8.3	40.8	38.7		38.5	23.2	8.7
LOS		D			D	Α	D	D		D	С	Α
Approach Delay		35.9			33.0			38.8			22.3	
Approach LOS		D			С			D			С	
Internation Summan												

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.92

Intersection Signal Delay: 31.9 Intersection Capacity Utilization 80.0%

Intersection LOS: C
ICU Level of Service D

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	<1>	0	0	<1	1	1	2>	0	1	2	1
ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50	50	50	50		50	50	50
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Satd. Flow (prot)	0	1765	0	0	1833	1583	1770	3497	0	1770	3539	1583
Flt Permitted		0.970			0.984		0.950			0.950		
Satd. Flow (perm)	0	1765	0	0	1833	1583	1770	3497	0	1770	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		11				39		11				303
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		556			748			915			882	
Travel Time (s)		12.6			17.0			20.8			20.0	
Volume (vph)	233	85	64	59	119	36	80	835	75	61	800	279
Adj. Flow (vph)	253	92	70	64	129	39	87	908	82	66	870	303
Lane Group Flow (vph)	0	415	0	0	193	39	87	990	0	66	870	303
Turn Type	Split			Split		Perm	Prot			Prot		Over
Protected Phases	6	6		. 2	2		7	4		3	8	6
Permitted Phases						2						
Detector Phases	6	6		2	2	2	7	4		3	8	6
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	20.0	20.0		20.0	20.0	20.0	8.0	20.0		8.0	20.0	20.0
Total Split (s)	29.0	29.0	0.0	20.0	20.0	20.0	10.0	31.0	0.0	10.0	31.0	29.0
Total Split (%)	32%	32%	0%	22%	22%	22%	11%	34%	0%	11%	34%	32%
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	0.5	0.5		0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	None		Coord	Coord	Coord	None	None		None	None	None
Act Effct Green (s)		23.2			20.0	20.0	6.0	26.8		5.9	26.8	23.2
Actuated g/C Ratio		0.26			0.22	0.22	0.07	0.30		0.07	0.30	0.26
v/c Ratio		0.90			0.47	0.10	0.74	0.94		0.57	0.82	0.48
Uniform Delay, d1		31.3			31.1	0.0	42.4	30.5		41.9	29.4	0.0
Delay		38.2			33.3	10.9	61.8	40.9		47.1	31.2	3.4
LOS		D			С	В	Ε	D		D	С	Α
Approach Delay		38.2			29.5			42.6			25.3	
Approach LOS		D			С			D			С	

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.94

Intersection Signal Delay: 33.7 Intersection Capacity Utilization 78.2%

Intersection LOS: C
ICU Level of Service C

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	<u> </u>	1	0	0	0	0	1	1	1	1	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50					50	50	50	50	
Trailing Detector (ft)	0	0	0					0	0	0	0	
Turning Speed (mph)	15	_	9	15		9	15		9	15		9
Satd. Flow (prot)	0	1770	1583	0	0	0	0	1863	1583	1770	1863	0
Flt Permitted	•	0.950								0.950		
Satd. Flow (perm)	0	1770	1583	0	0	0	0	1863	1583	1770	1863	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			398						559			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		443			610			882			1345	
Travel Time (s)		10.1			13.9			20.0			30.6	
Volume (vph)	305	0	501	0	0	0	0	638	460	364	430	0
Adj. Flow (vph)	381	0	626	0	0	0	0	798	575	455	538	0
Lane Group Flow (vph)	0	381	626	0	0	0	0	798	575	455	538	0
Turn Type	Perm		Perm						Perm	Prot		
Protected Phases		6						4		3	8	
Permitted Phases	6		6						4			
Detector Phases	6	6	6					4	4	3	8	
Minimum Initial (s)	4.0	4.0	4.0					4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0					20.0	20.0	8.0	20.0	
Total Split (s)	24.0	24.0	24.0	0.0	0.0	0.0	0.0	43.0	43.0	23.0	66.0	0.0
Total Split (%)	27%	27%	27%	0%	0%	0%	0%	48%	48%	26%	73%	0%
Yellow Time (s)	3.5	3.5	3.5					3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5					0.5	0.5	0.5	0.5	
Lead/Lag								Lag	Lag	Lead		
Lead-Lag Optimize?								Yes	Yes	Yes	N	
Recall Mode	Coord	Coord						None	None	None	None	
Act Effct Green (s)		20.0	20.0					39.0	39.0	19.0	62.0	
Actuated g/C Ratio		0.22	0.22					0.43	0.43	0.21	0.69	
v/c Ratio		0.97	0.95					0.99	0.57	1.22	0.42	
Uniform Delay, d1		34.7	12.3					25.3	0.4	35.5	6.1	
Delay		66.0	30.6					50.0	9.2	114.2	12.9	
LOS		E	С					D	Α	F	B	
Approach Delay		44.0						32.9			59.3 E	
Approach LOS		D						С			드	
Internation Summan												

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2: and 6:SETL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.22

Intersection Signal Delay: 44.0
Intersection Capacity Utilization 98.3%

Intersection LOS: D
ICU Level of Service E

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	<1	1	0	0	0	0	1	1	1	1	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	•••				50	50	50	50	
Trailing Detector (ft)	0	0	0					0	0	0	0	
Turning Speed (mph)	15	·	9	15		9	15		9	15		9
Satd. Flow (prot)	0	1770	1583	Ō	0	0	0	1863	1583	1770	1863	0
Flt Permitted	•	0.950		_						0.950		
Satd. Flow (perm)	0	1770	1583	0	0	0	0	1863	1583	1770	1863	0
Right Turn on Red	_		Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			235						303			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		443			610			882			1345	
Travel Time (s)		10.1			13.9			20.0			30.6	
Volume (vph)	400	0	441	0	0	0	0	840	350	490	795	0
Adj. Flow (vph)	421	0	464	0	0	0	0	884	365	500	811	0
Lane Group Flow (vph)	0	421	464	0	0	0	0	884	365	500	811	٥
Turn Type	Perm		Perm						Perm	Prot		
Protected Phases		6						4		3	8	
Permitted Phases	6		6						4			
Detector Phases	6	6	6					4	4	3	8	
Minimum Initial (s)	4.0	4.0	4.0					4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0					20.0	20.0	8.0	20.0	
Total Split (s)	24.0	24.0	24.0	0.0	0.0	0.0	0.0	40.0	40.0	26.0	66.0	0.0
Total Split (%)	27%	27%	27%	0%	0%	0%	0%	44%	44%	29%	73%	0%
Yellow Time (s)	3.5	3.5	3.5					3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5					0.5	0.5	0.5	0.5	
Lead/Lag								Lag	Lag	Lead		
Lead-Lag Optimize?								Yes	Yes	Yes		
Recall Mode	Coord	Coord						None	None	None	None	
Act Effct Green (s)		20.0	20.0					36.0	36.0	22.0	62.0	
Actuated g/C Ratio		0.22	0.22					0.40	0.40	0.24	0.69	
v/c Ratio		1.07	0.87					1.19	0.45	1.15	0.63	
Uniform Delay, d1		35.0	16.2					27.0	2.9	34.0	7.7	
Delay		89.9	25.8					103.6	12.0	48.9	18.7	
LOS		F	С					F	В	D	B	
Approach Delay		56.2						76.8			30.2 C	
Approach LOS		Ε						Ε			C	

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2: and 6:SETL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.19
Intersection Signal Delay: 53.8

Intersection Signal Delay, 55.6
Intersection Capacity Utilization 107.6%

Intersection LOS: D ICU Level of Service F

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	0	0	0	<1	1	1	1	0	0	1	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)				50	50	50	50	50			50	50
Trailing Detector (ft)				0	0	0	0	0			0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Satd. Flow (prot)	0	0	0	0	1770	1583	1770	1863	0	0	1863	1583
Flt Permitted	_	_	_		0.950		0.950					
Satd. Flow (perm)	0	0	0	0	1770	1583	1770	1863	0	0	1863	1583
Right Turn on Red	_	_	Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						377						192
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		550			849			1345			698	
Travel Time (s)		12.5			19.3			30.6			15.9	
Volume (vph)	0	0	0	295	0	392	425	438	0	0	519	161
Adj. Flow (vph)	0	0	0	393	0	523	567	548	0	0	649	201
Lane Group Flow (vph)	0	0	0	0	393	523	567	548	0	0	649	201
Turn Type	_			Perm		Perm	Prot					Perm
Protected Phases					2		7	4			8	
Permitted Phases				2		2						8
Detector Phases				2	2	2	7	4			8	8
Minimum Initial (s)				4.0	4.0	4.0	4.0	4.0			4.0	4.0
Minimum Split (s)				20.0	20.0	20.0	8.0	20.0			20.0	20.0
Total Split (s)	0.0	0.0	0.0	26.0	26.0	26.0	34.0	64.0	0.0	0.0	30.0	30.0
Total Split (%)	0%	0%	0%	29%	29%	29%	38%	71%	0%	0%	33%	33%
Yellow Time (s)				3.5	3.5	3.5	3.5	3.5			3.5	3.5
All-Red Time (s)				0.5	0.5	0.5	0.5	0.5			0.5	0.5
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Recall Mode				Coord	Coord	Coord	None	None			None	None
Act Effct Green (s)					22.1	22.1	29.9	59.9			26.0	26.0
Actuated g/C Ratio					0.25	0.25	0.33	0.67			0.29	0.29
v/c Ratio					0.90	0.78	0.96	0.44			1.21	0.34
Uniform Delay, d1					32.9	8.1	29.5	7.1			32.0	1.0
Delay					50.5	11.3	25.5	13.5			121.1	4.6
LOS					D	В	С	В			F	Α
Approach Delay					28.1			19.6			93.6	
Approach LOS					С			В			F	

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.21

Intersection Signal Delay: 44.1

Intersection Capacity Utilization 97.3%

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	0	0	0	<1	1	1	1	0	0	1	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)				50	50	50	50	50	•		50	50
Trailing Detector (ft)				0	0	0	0	0			0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Satd. Flow (prot)	0	0	0	0	1770	1583	1770	1863	0	0	1863	1583
Flt Permitted					0.950		0.950					
Satd. Flow (perm)	0	0	0	0	1770	1583	1770	1863	0	0	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						290						227
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		550			849			1345			698	
Travel Time (s)		12.5			19.3			30.6			15.9	
Volume (vph)	0	0	0	579	0	543	663	592	0	0	922	329
Adj. Flow (vph)	0	0	0	629	0	590	698	623	0	0	991	358
Lane Group Flow (vph)	0	0	0	0	629	590	698	623	0	0	991	358
Turn Type				Perm		Perm	Prot					Perm
Protected Phases					2		7	4			8	_
Permitted Phases				2		2					_	8
Detector Phases				2	2	2	7	4			8	8
Minimum Initial (s)				4.0	4.0	4.0	4.0	4.0			4.0	4.0
Minimum Split (s)				20.0	20.0	20.0	8.0	20.0			20.0	20.0
Total Split (s)	0.0	0.0	0.0	31.0	31.0	31.0	28.0	59.0	0.0	0.0	31.0	31.0
Total Split (%)	0%	0%	0%	34%	34%	34%	31%	66%	0%	0%	34%	34%
Yellow Time (s)				3.5	3.5	3.5	3.5	3.5			3.5	3.5
All-Red Time (s)				0.5	0.5	0.5	0.5	0.5			0.5	0.5
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Recall Mode				Coord	Coord		None	None			None	None
Act Effct Green (s)					27.0	27.0	24.0	55.0			27.0	27.0
Actuated g/C Ratio					0.30	0.30	0.27	0.61			0.30	0.30
v/c Ratio					1.18	0.87	1.48	0.55			1.77	0.56
Uniform Delay, d1					31.5	14.6	33.0	10.2			31.5	8.9
Delay					114.1	22.3	171.5	21.0			242.7	9.9
LOS					F	С	F	С			F	Α
Approach Delay					69.7			100.5			180.9	
Approach LOS					E			F			F	

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:, Start of Green

Natural Cycle: 130

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.77

Intersection Signal Delay: 118.7
Intersection Capacity Utilization 135.7%

	Me	erge Analysis_			
	bh				
Analyst:	Darnell				
Agency/Co.:	11/17/2005				
Date performed: Analysis time period:					
Freeway/Dir of Travel:	I-15 North	sound On-Ramp			
	I=15 North	State Route 7	6		
Junction:	County SD/		•		
Jurisdiction:	-	(with project)			
Analysıs Year: Description: 051008 -					
Description: 001000 -	Gregory can	yon			
		reeway uata			
Type of analysis		Merg	je		
Number of lanes in fre	eway	4			
Free-flow speed on fre		70.0)	mph	
Volume on freeway		4600)	vph	
		Un Kamp Data_			
		Diah	. +-		
Side of freeway		Righ	10		
Number of lanes in ram		1 35.0	1	mph	
Free-flow speed on ram	ψ		,	vph	
Volume on ramp		586		vpn ft	
Length of tirst accel/		500		ft	
Length of second accel	./decel lane			E.C.	
	Adjacent	Kamp Data (it	one exist	.s)	
Does adjacent ramp exi	st?	No			
volume on adjacent kam				vph	
Position of adjacent R					
Type of adjacent Ramp					
Distance to adjacent b	Kamp			tt	
Co	onversion to	pc/h Under Bas	se Condit	ions	_
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Junction Components		Freeway	Kamp		djacent amp
Volume, V (vph)		4600	586		vph
Peak-hour factor, PHF		0.90	0.90		
Peak 15-min volume, v1	15	1278	163		V
Trucks and buses		10	10		%
Recreational vehicles		∠	2.		*
Terrain type:		Level	Level		
Grade		:	%	8	*
Length		ī	mı	ma.	mı
Trucks and buses PCE,	ET	1.5	1.5		
Recreational vehicle		1.2	1.2		
Heavy vehicle adjustme		0.949	0.949		
Driver population fact	tor fP	1.00	1.00		
Flow rate, vp	101, 11	5387	686		pcph
, ,	Patameta.	on of Vlz Merg	o Arose		
	ESCIMALIC	on of viz merg	e Areas		
L =		(Equation	25-2 or 2	5-3)	
ይ <u>ያ</u> ይ :		Using Equa	tion 4		
r · · FM		ostny była			
		1569 pc/h			
12		1505 pc/			
	Car	pacity Checks_			
	Actual		m	LOS F?	
v	6073	9600		No	
FO				.,	
v	2255	4600		No	
RTZ					
Lava	al of Service	Determination	(if not	F)	
Density, $D = 5.475 +$		0.0078 v -	0.00627 1	. = 1 A	3.0 bc/mr/11
R Level of service for	R ramp-freeway		s of infl		}
Teket of Setaice for	ramp ireeway	James area			

```
Merge Analysis
Analyst:
Agency/Co.: Darnell
Date performed: 11/17/2005
Analysis time period: PM Peak
Freeway/Dir of Travel: I-15 Northbound On-Ramp
Junction: I-15 North/State Route 76
Jurisdiction: County SD/Caltrans
Analysis Year: Near Term (with project)
Description: 051008 - Gregory Canyon
                               ___treeway bata___
Type of analysis
Number of lanes in freeway
                                             70.0
                                                            mph
Free-flow speed on freeway
Volume on freeway
                                             4600
                                                            vph
                            ____on Kamp Data_
                                             Right
Side of freeway
Number of lanes in ramp
                                             35.0
                                                            mph
Free-flow speed on ramp
                                             992
                                                             vph
Volume on ramp
Length of first accel/decel lane
                                             500
                                                             it
                                                             £t
Length of second accel/decel lane
                      ____Adjacent Kamp Data (it one exists)___
Does adjacent ramp exist?
                                            No
                                                             day
volume on adjacent Kamp
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Kamp
                   __Conversion to pc/h Under Base Conditions_
                                        reeway
                                                    катр
                                                                 Adjacent
Junction Components
                                                                 Ramp
                                                                            vph
                                        4600
                                                    992
Volume, V (vph)
Peak-hour factor, PHF
                                        0.90
                                                    0.90
Peak 15-min volume, v15
                                        1278
                                                     276
                                        10
                                                    10
Trucks and buses
Recreational vehicles
                                         2
                                                   Level
                                        Level
Terrain type:
                                               & wr
    Grade
     Length
                                        1.5
                                                    1.5
Trucks and buses PCE, ET
                                                    1.2
                                        1.2
Recreational vehicle PCE, ER
                                                   0.949
Heavy vehicle adjustment, thy
                                        U.949
                                        1.00
                                                     1.00
Driver population factor, fP
                                        5387
                                                                           pcph
                                                    1162
Flow rate, vp
                      __Estimation of VIZ Merge Areas_
                                     (Equation 25-2 or 25-3)
                    ŁŲ
                   P =
                         0.232 Using Equation 4
                   FM
                   v = v (P) = 1249 pc/h
                    12 F FM
                              ___Capacity Unecks___
                                          Maximum LOS F?
                            Actual
                            6549
                                          9600
      FO
                                         4600
                                                          No
                            2411
                 Level of Service Determination (if not F)
 Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 20.6 pc/mi/1n R
 Level of service for ramp-freeway junction areas of influence C
```

```
___Diverge Analysis____
                       bh
Analyst:
                       Darnell
Agency/Co.:
Date performed: 11/17/2005
Analysis time period: AM
Freeway/Dir of Travel: I-15 Northbound Off
                       I-15 North Off/State Route 76
Junction: I-15 North Off/State
Jurisdiction: County SD/Caltrans
Amalysis Year:
                       Near term (with project)
Description: 051008 - Gregory Canyon
                            ____Freeway Data__
                                            Diverge
Type of analysis
Number of lanes in freeway
                                            70.0
                                                           mph
Free-flow speed on freeway
                                            4600
                                                           vph
Volume on freeway
                            ___Off Ramp Data___
                                            Right
Side of freeway
Number of lanes in ramp
                                            35.0
                                                           mph
Free-Flow speed on ramp
Volume on ramp
                                            687
                                                           vph
Length of first accel/decel lane
                                            500
                                                           it
Length of second accel/decel lane
                  _____Adjacent Kamp Data (if one exists)_
Does adjacent ramp exist?
                                            No
Volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
                                                            tt
Distance to adjacent ramp
              Conversion to pc/h Under Base Conditions_
                                                                Adjacent
Junction Components
                                       Freeway
                                                  Ramp
                                                                Ramp
                                                   687
                                       4600
                                                                          vph
Volume, V (vph)
                                       0.90
                                                   0.90
Peak-hour factor, PHF
                                                   191
Peak 15-min volume, v15
                                       1278
                                       21
                                                   21
Trucks and buses
Kecreational vehicles
                                       U
                                                   U
                                                   Level
                                       Level
Terrain type:
                                       0.00 % 0.00
    Grade
                                                                       mı.
                                       U.00 mm U.00
     Length
                                                          mı
Trucks and buses PCE, ET
                                       1.5
                                                   1.5
Recreational vehicle PCE, ER
                                       1.2
                                                   1.2
Heavy vehicle adjustment, IHV Driver population factor, fP
                                                   0.905
                                       0.905
                                       1,00
                                                   1.00
                                                                         paph
                                       5648
                                                   843
Flow rate, vp
                       Estimation of VIZ Diverge Areas_
                  L =
                                     (Equation 25-8 or 25-9)
                   EQ
                         0.436 Using Equation 8
                  P ==
                  v = v + (v - v) P = 2938 	 pc/h
12 R F R FD
                            __Capacity Checks____
                                                          LOS F?
                            Actual
                                         Maximum
                            5648
                                         9600
                                                          No
                            2938
                                         4400
                                                          No
      12
                                          9600
                            4805
      v = v - v
      FO
           F
                                                          No
                            843
                                          2000
                 Level of Service Determination (if not F)_
                        D = 4.252 + 0.0086 v - 0.009 L = 25.0 pc/mi/ln
 Density.
                                           12
                                                       Ð
                        K
 Level of service for ramp-freeway junction areas of influence C
```

```
Diverge Analysis____
Analyst:
                       bh
                       Darnell
Agency/Co.:
Date performed:
Date performed: 11/17/2005
Analysis time period: PM
Freeway/Dir of Travel: 1-15 Northbound Off
Junction: I-15 North Off/State Route 76
Jurisdiction: County SD/Caltrans
Analysis rear: Near term (with project)
Description: 051008 - Gregory Canyon
                             ____rreeway uata_
                                            Diverge
Type of analysis
Number of lanes in freeway
                                            70.0
Free-flow speed on freeway
                                            4600
Volume on freeway
                           ___Off Ramp Data___
Side of freeway
Number of lanes in ramp
                                            35.0
                                                           mph
Free-Flow speed on ramp
Volume on ramp
                                            1122
                                                            vph
Length of first accel/decel lane
                                             500
                                                            ††
Length of second accel/decel lane
               ____Adjacent Kamp Data (if one exists)___
Does adjacent ramp exist?
volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
                 Conversion to pc/h Under Base Conditions
                                                                Adjacent
                                       rreeway Kamp
Junction Components
                                                                Ramp
Volume, V (vph)
                                       4600
                                                   1122
                                                                          vph
                                       0.90
                                                  0.90
Peak-hour factor, PHF
                                       1278
                                                   312
Peak 15-min volume, v15
                                                  21
Trucks and buses
                                       21
Recreational vehicles
                                       U
                                                   U
                                       Level
                                                   Level
Terrain type:
                                      0.00 % 0.00
  Grade
                                                          ma
                                       U.UU mi U.UU
     Length
Trucks and buses PCE, ET
                                       1.5
                                                   1.5
                                                  1.2
                                      1.2
Recreational vehicle PCE, ER
Heavy vehicle adjustment, fHV
Driver population factor, fP
                                       0.905
                                                    0.905
                                                  1.00
                                        1.00
                                                    1378
                                                                         paph
                                       5648
Flow rate, vp
                       Estimation of VIZ Diverge Areas___
                  L =
                                     (Equation 25-8 or 25-9)
                   ŁŲ
                         0.436 Using Equation 8
                   P =
                  v = v + (v - v) P = 3240 pc/h
12 R F R FD
                            ___Capacity Checks_____
                                                          LOS F?
                            Actual
                                          Maximum
                                                          No
                            5648
                                          9600
                            3240
                                         4400
                                                          No
      12
                                          9600
                            4270
      FO
          F
                                                          No
                            1378
                                          ZUUU
                 Level of Service Determination (if not F)
                        D = 4.252 + 0.0086 \text{ v} - 0.009 \text{ L} = 27.6 \text{ pc/mi/ln}
 Density,
 Level of service for ramp-freeway junction areas of influence C
```

```
Merge Analysis
                        bh
Analyst:
                       Darnell
Agency/Co.:
Date performed: 11/17/2005
Analysis time period: AM Peak
Freeway/Dir of Travel: 1-15 Southbound On-Kamp
Junction: I-15 South/State Route 76
Jurisdiction: County SD/Caltrans
Analysis rear:
                       near term (with project)
Description: 051008 - Gregory Canyon
                            ____rreeway bata_
                                             Merge
Type of analysis
Number of lanes in freeway
                                             70.0
Free-flow speed on freeway
                                             4500
                                                            vph
Volume on freeway
                               on kamp bata__
                                             Right
Side of freeway
Number of lanes in ramp
                                             35.0
                                                            mph
Free-flow speed on ramp
                                             824
                                                            vph
Volume on ramp
Length of first accel/decel lane
                                             500
Length of second accel/decel lane
                     ____Aajacent kamp vata (ii one exists)__
                                             No
Does adjacent ramp exist?
                                                            vpn
volume on adjacent kamp
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Kamp
                    _Conversion to pc/h Under Base Conditions_
                                                                Adjacent
                                        rreeway
                                                    катр
Junction Components
                                                                Ramp
                                        4500
                                                    824
                                                                           vph
Volume, V (vph)
                                                    0.90
                                        0.90
reak-nour factor, FHF
                                                    229
Peak 15-min volume, v15
                                        1250
Trucks and buses
                                        10
                                                    10
Recreational Vehicles
                                        Level
                                                    Level
Terrain type:
    Grade
                                                                         mı
                                                mı
                                                            mı,
     Lengtn
Trucks and buses PCE, ET
                                        1.5
                                                    1.5
Recreational vehicle PCE, ER
                                        1.2
                                                    1.2
                                        0.949
                                                    0.949
neavy venicle adjustment, thy
                                                    1.00
Driver population factor, fP
                                        1.00
                                                                           pcph
                                        5270
                                                    965
Flow rate, vp
                     bstimation of VIZ Merge Areas_
                  լ =
                                      (Equation 25-2 or 25-3)
                  ₽ =
                          0.256
                                    Using Equation 4
                   v = v (P) = 1352 pc/h
                   12 F FM
                              __capacity Checks__
                                                           LOS F?
                                          Maximum
                            Actual
                            6235
                                          9600
                                                          NO
      FO
                            2317
                                          4600
                                                           No
      V
      RIZ
                  Level of Service Determination (if not F)___
 Density, D = 5.475 + 0.00734 \text{ v} + 0.0078 \text{ v} - 0.00627 \text{ L} = 20.0- pc/mi/ln}
R R 12 A
 Level of service for ramp-freeway junction areas of influence B
```

```
merge Analysis___
                        bh
Analyst:
                        Darnell
Agency/Co.:
Date performed: 11/17/2005
Analysis time period: PM Peak
Freeway/Dir of Travel: 1-15 Southbound On-Ramp
Junction: I-15 South/State Route 76
Jurisdiction: County SD/Caltrans
Analysis rear: Near term (with project)
Description: 051008 - Gregory Canyon
                             ____rreeway uata_
                                              Merge
Type of analysis
Number of lanes in freeway
                                              70.0
Free-flow speed on freeway
                                              4500
Volume on freeway
                              On kamp Data__
Side of freeway
Number of lanes in ramp
                                              35.0
                                                              mph
Free-flow speed on ramp
                                                              vph
Volume on ramp
                                              840
Length of first accel/decel lane
                                              500
                                                              it
Length of second accel/decel lane
                   Adjacent Kamp Data (it one exists)_
                                              No
Does adjacent ramp exist?
volume on adjacent Kamp
 Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Kamp
                    Conversion to pc/h Under Base Conditions_
                                                                  Adjacent
                                         treeway
                                                     Kamp
Junction Components
                                                                  Ramp
                                         4500
                                                     840
                                                                             vph
Volume, V (vph)
                                                     0.90
                                         0.90
 reak-hour factor, PHF
                                                      233
                                         1250
 Peak 15-min volume, v15
                                                     10
 Trucks and buses
                                         10
 Recreational Vehicles
                                         Level
 Terrain type:
   Grade
                                                 ma
                                                             mı
     Length
 Trucks and buses PCE, ET
                                         1.5
                                                     1.5
                                         1.2
                                                     1.2
 Recreational vehicle PCE, ER
                                                     0.949
                                         0.949
 Heavy venicle adjustment, IHV
                                         1.00
                                                     1.00
 Driver population factor, fP
                                         5270
                                                     984
                                                                            paph
 Flow rate, vp
                         Estimation of VIZ Merge Areas__
                   ]_ =
                                       (Equation 25-2 or 25-3)
                    EQ
                          0.254
                                     Using Equation 4
                   v = v (P) = 1339 pc/h
                    12 F FM
                                __capacity Uhecks___
                                                            LOS F?
                             Actual
                                           Maximum
                                                            NO
      ٧
                             6254
                                            9600
       FO
                             2323
                                            4600
                                                            No
      V
       K12
                  Level of Service Determination (if not F)______
 Density, D = 5.475 + 0.00734 \text{ v} + 0.0078 \text{ v} - 0.00627 \text{ L} = 20.07 \text{ pc/mi/ln}}{R} R 12 A
 Level of service for ramp-freeway junction areas of influence C
```

```
Diverge Analysis_____
Analyst:
                      parnell
Agency/Co.:
                      11/17/2005
Date performed:
Analysis time period: AM
Freeway/Dir of Travel: 1-15 Southbound Off
Jurisdiction:
                      I-15 South Off/State Route 76
                     County SD/Caltrans
                      Near Term (with project)
Analysis rear:
Description: 051008 - Gregory Canyon
                            __rreeway uata___
                                          Diverge
Type of analysis
Number of tames in freeway
                                          70.0
                                                        mph
Free-flow speed on freeway
Volume on freeway
                                          4600
                                                        vph
                          ____orr kamp bata
                                          Right
Side of freeway
Number of tames in ramp
                                          35.0
                                                        mph
Free-Flow speed on ramp
                                          806
                                                        vph
Volume on ramp
                                                        īτ
Length of first accel/decel lane
                                          500
                                                        ft
Length of second accel/decel lane
                    Adjacent kamp vata (11 one exists)
Does adjacent ramp exist?
volume on adjacent ramp
                                                        vpn
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
                 Conversion to pc/h Under Base Conditions_
                                     rreeway
                                                катр
                                                            Adjacent
Junction Components
                                                            Ramp
                                                806
                                                                      vph
                                     4600
Volume, V (vph)
reak-nour factor, FHr
                                     0.90
                                                0.90
                                     1278
                                                224
Peak 15-min volume, v15
                                     0
                                                 0
Trucks and buses
                                                 U
kecreational venicles
Terrain type:
                                     Level
                                                Level
                                     0.00 % 0.00
   Grade
                                            mi U.UU
                                                        mı
                                                                    mı
                                     0.00
    Length
Trucks and buses PCE, ET
                                     1.5
                                                1.5
                                                1.2
Recreational vehicle PCE, ER
                                     1.2
                                                1.000
neavy venicle adjustment, thy
                                     1.000
                                                1.00
Driver population factor, fP
                                     1.00
                                                 896
                                                                     paph
                                     5111
Flow rate, vp
                    ____bstimation of viz biverge Areas_
                 L =
                                   (Equation 25-8 or 25-9)
                  ьŲ
                       0.436 Using Equation 8
                  FD
                 v = v + (v - v) P = 2/34 pc/n
12 R F R FD
                           ___capacity checks___
                                                      LOS F?
                          Actual
                                       Maximum
                                       9600
                          5111
      Fi F
                                       4400
                                                       No
                          2734
                          4215
                                       9600
                                                       No
      FO F
             R
                                        ZUUU
                          896
                Level of Service Determination (if not t)___
                      D = 4.252 + 0.0086 v - 0.009 L = 23.3 pc/mi/ln
 Density,
                                        1.2
 Level of service for ramp-freeway junction areas of influence C
```

```
__uiverge Anaiysis___
Analyst:
                      Darnell
Agency/Co.:
Date performed:
                      11/17/2005
Analysis time period: PM
Freeway/Dir of Travel: 1-15 Southbound Off
Jurisdiction:
                      I-15 South Off/State Route 76
                     County SD/Caltrans
                      Near Term (With project)
Analysis rear:
Description: 051008 - Gregory Canyon
                           ____rreeway Data__
                                          Diverge
Type of analysis
Number of lanes in freeway
                                          70.0
                                                        mph
Free-flow speed on freeway
Volume on freeway
                                          4600
                                                        vph
                           ___OII kamp Data__
Side of freeway
                                          Right
Number of lanes in ramp
                                          35.0
                                                        mph
Free-Flow speed on ramp
                                          841
                                                        vph
Volume on ramp
Length of first accel/decel lane
                                          500
                                                        İt
                                                        ft
Length of second accel/decel lane
                     Adjacent kamp bata (if one exists)__
                                          No
Does adjacent ramp exist?
                                                        vpn
volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
pistance to adjacent ramp
                 Conversion to pc/h Under Base Conditions_
                                                            Adjacent
                                     rreeway
                                                катр
Junction Components
                                                            Ramp
                                                                      vph
                                                 841
                                     4600
Volume, V (vph)
reak-nour factor, PHF
                                     0.90
                                                 0.90
                                     1278
                                                 234
Peak 15-min volume, v15
                                     0
Trucks and buses
kecreational venicies
                                     U
                                                 U
                                     Level
                                                Level
Terrain type:
                                     0.00
                                            % 0.00
   Grade
                                            mi U.UU
                                                                    ma.
                                     V.UU
                                                        mı
    Length
                                                 1.5
Trucks and buses PCE, ET
                                     1.5
                                     1.2
                                                 1.2
Recreational vehicle PCE, ER
neavy venicie adjustment, thy
                                     1.000
                                                 I.UUU
Driver population factor, fP
                                     1.00
                                                 1.00
                                                 934
                                                                     paph
                                     5111
Flow rate, vp
                      Estimation of VIZ Diverge Areas_
                 L =
                                   (Equation 25-8 or 25-9)
                  ĽŲ
                                 Using Equation 8
                        0.436
                  FD
                 v = v + (v - v) P = 2/55 pc/n
                  12 R F R FD
                          ___capacity cnecks_
                          Actual
                                       Maximum
                                                       LOS F?
                                       9600
                          1110
      Fi F
                                       4400
                          2755
                                                       No
                          4177
                                        9600
                                                       No
      FO
                                                       NO
                          9.54
                                        2000
                 Level of Service Determination (if not F)_
                       D = 4.252 + 0.0086 v - 0.009 L = 23.4 pc/mi/ln
 Density,
                                        1 ∠
 Level of service for ramp-freeway junction areas of influence C
```

APPENDIX H Year 2030 (No Project) Worksheets

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	<1>	0	0	. <1	1	1	2>	0	1	2	1
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50	50	50	50		-50	50	50
Trailing Detector (ft)	0	. 0		0	0	. 0	0	0		0	.0	0
Turning Speed (mph)	. 15		9	15		. 9	15		9	: 15	•	9
Satd. Flow (prot)	0	1772	0.	. 0	1824	1583	1770	3504	· 0	1770	3539	1583
Flt Permitted	· · .	0.966			0.979		0.950		•	0.950		
Satd. Flow (perm)	0	1772	0	0	1824	1583	1770	3504	0	1770	3539	1583
Right Turn on Red			Yes.		•	Yes			Yes			Yes
Satd. Flow (RTOR)		7		•		103		8				143
Link Speed (mph)		30			- 30			. 30		•	- 30	
Link Distance (ft)		556	•		748			915		•	882	
Travel Time (s)	•	12.6			17.0			20.8		•	20.0	
Volume (vph)	402	108	62	.116	156	95	44	886	63	74	747	132
Adj. Flow (vph)	4,37	117	67	126	170	103	48	963	68	80	812	143
Lane Group Flow (vph)	. 0	621	. 0	. 0	296	103	48	1031	0	80	812	143
Turn Type	Split			Split	•	Perm	Prot			Prot		Over
Protected Phases	6	6		. 2	2		. 7	4		3	8	6
Permitted Phases						2					*	
Detector Phases	6.	6		2	2:		7	4		3	. 8	6
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	•	4.0	4.0	4:0
Minimum Split (s)	20.0	20.0		20.0	20.0	20.0	8.0	20.0		8.0	20.0	20.0
Total Split (s)	33.0	33.0	0.0	21.0	21.0	21.0	8.0	28.0	0.0	8.0	28.0	33.0
Total Split (%)	37%	- 37%	. 0%	23%	23%	23%	9%	31%	0%	9%	31%	37%
Yellow Time (s)	3.5	3.5		. 3.5	3.5	3.5	3.5			3.5		3.5
All-Red Time (s)	0.5	0.5		0.5	. 0.5	0.5	0.5	0.5		0.5	0.5	0.5
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?			·				Yes	Yes		Yes	Yes	
Recall Mode	None	None		Coord	Coord	Coord	None	None		None	None	None
Act Effct Green (s)		29.0		,	17.0	17.0	4.0	24.0		4.0	25.6	29.0
Actuated g/C Ratio		0.32			0.19	0.19	0.04	0.27		0.04	0.28	0.32
v/c Ratio		1.08		•	0.86	0.27	0.61	1.10		1.01	0.81	0.24
Uniform Delay, d1		30.1			36.1	0.0	43.0	32.3		43.0	29.9	0.0
Delay		81.6	-		49.3	7.0	59.5	83.6		88.3	24.3	6.9
LOS		F			D	Α	E	F		F	C	A
Approach Delay		81.6			38.4	_		82.5			26,8	• •
Approach LOS		F			D		•	F		•	C	•
Interpotion Summer	;							-				

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.10

Intersection Signal Delay: 58.3

Intersection Capacity Utilization 97.0%

10.1139111.57								•	•		,	
	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL		SWR.
Lane Group	<u> </u>	<1>	0	0	<1	1.1	. 1	2>	0	1	2	1
Lane Configurations		1900	1900	1900	1900	1900	1900	1900	1900	1900	1.900	1900
Ideal Flow (vphpl)	1900	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Total Lost Time (s)	4.0	50	4.0	50	50	50	50	50		50	50	50
Leading Detector (ft)	50		·	0	0	0	0	0		0	0	. 0
Trailing Detector (ft)	0	0	9	15		9	15	: *	9	15		9
Turning Speed (mph)	15	4700	0		1829	1583	1770	3500	0	1770	3539	1583
Satd. Flow (prot)	0	1763	, 0	U	0.982		0.950			0.950		
Fit Permitted		0.969	0	0	1829	1583	1770	3500	. 0	1770	3539	1583
Satd. Flow (perm)	0	1763	0	. 0.	1023	Yes			Yes			Yes
Right Turn on Red	•		Yes			52		9	•			334
Satd. Flow (RTOR)		11			30	02	•	30			30	
Link Speed (mph)	•	30		•	748			915		_	882	•
Link Distance (ft)		556		•	17.0	*		20.8	•	•	20.0	
Travel Time (s)		12.6	20	77	131	48	84	1061	81	67	997	307
Volume (vph)	315	93	83	77 84	142	52	91	1153	88	73	1084	334
Adj. Flow (vph)	342	101	90	04	226	52	91	1241	0	73	1084	334
Lane Group Flow (vph)	0	533	0		220	Perm	Prot			Prot		Over
Turn Type	Split			Split	. 2		7	: 4		3	8	6
Protected Phases	. 6	. 6		. 2	· Z	. 2	•	,				
Permitted Phases		_			2		7	4		. 3	. 8	6
Detector Phases	6	6		2 4.0	4.0		4.0	4.0		4.0	4.0	4.0
Minimum Initial (s)	4.0	4.0			20.0		8.0	20.0		8.0	20.0	20.0
Minimum Split (s)	20.0		~ ~	20.0	20.0				0.0	0.8	32.0	29.0
Total Split (s)	29.0		0.0		20.0		10%	37%			36%	32%
Total Split (%)	32%	32%	0%							3.5	3.5	3.5
Yellow Time (s)	3.5		•	3.5			0.5			0.5	0.5	0.5
All-Red Time (s)	. 0.5	0.5		0.5	0.5	0.5	Lead			Lead		
Lead/Lag							Yes	-		Yes		
Lead-Lag Optimize?		•				Coord				None		None
Recall Mode	None			Coord		Coord 16.0	5.0			4.0		25.0
Act Effct Green (s)		25.0			16.0					0.04		0.28
Actuated g/C Ratio		0.28			0.18					0.92		
v/c Ratio		1.07			0.70					42.8		
Uniform Delay, d1		31.8			34.7					48.5		
Delay		83.0			38.1							
LOS		F	•			-		80.8		-	24.4	
Approach Delay		83.0			32.8			40.C				
Approach LOS		F			(,				
1 •		•					•					

Other Area Type:

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.09

Intersection Signal Delay: 54.3

Intersection Capacity Utilization 93.9%

	•							•	•		•		
	Lane Group	SEL	SET	SER	NWL.	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
•	Lane Configurations	0	<1	. 1	0	. 0	0	0	1	1	1	1	0
	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
	Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4:0	4.0
	Leading Detector (ft)	50	∵ 50	50	•	-	•		50	50	50	50	
	Trailing Detector (ft)	0	. 0	0.	•				0	. 0	0	0	
	Turning Speed (mph)	15		9	15		. 9	15		9	15		9
	Satd. Flow (prot)	. 0	1770	1583	Ö.	. 0	0	0	1863	1583	1770	1863	0.
	Flt Permitted		0.950				•			:	0.950		
	Satd. Flow (perm)	0	1770	1583	0	. 0	. 0	0	1863	1583	1770	1863	. 0
	Right Turn on Red			Yes			Yes			Yes			Yes
	Satd. Flow (RTOR)		•	307						487		•	
	Link Speed (mph)	•	30			30			30			30	
	Link Distance (ft)		443	•		610			882	•		1345	
	Travel Time (s)		10.1			13.9			20.0			30.6	
	Volume (vph)	420	0	657	0	0	0	. 0	978	601.	321	495	0
	Adj. Flow (vph)	525	0	821	0	0	0	0	1222	751	401	619	Ō
	Lane Group Flow (vph)	. 0	525	821	. 0	0.	0	. 0	1222	751	401	619	. 0
	Turn Type	Perm		Perm						Perm	Prot	.=	_
	Protected Phases		6						4		3.	8	
	Permitted Phases	6		6						4			
	Detector Phases	6	6	6	•			•	4	. 4	3	8	•
	Minimum Initial (s)	4.0	4.0	4.0					4.0	4.0	4.0	4.0	*1
	Minimum Split (s)	20.0	20.0	20.0					20.0	20.0	8.0	20.0	
	Total Split (s)	29.0	29:0	29.0	0.0	0.0	0.0	0.0	44.0	44.0	17.0	61.0	0.0
	Total Split (%)	32%	32%	32%	0%	0%	0%	0%	49%	49%	19%	68%	0%
	Yellow Time (s)	3.5	3.5	3.5					3.5	3.5	3.5	3.5	
	All-Red Time (s)	0.5	0.5	0.5					0.5	0.5	0.5	0.5	
	Lead/Lag						•		Lag	Lag	Lead		
	Lead-Lag Optimize?								Yes	Yes	Yes		
	Recall Mode	Coord	Coord						None	None	None	None	•
	Act Effct Green (s)		25.0	25.0	•				40.0	40.0	13.0	57.0	
	Actuated g/C Ratio	•	0.28	0.28					0.44	0.44	0.14	0.63	
	v/c Ratio		1.07	1.24					1.48	0.77	1.57	0.52	
	Uniform Delay, d1	•	32.5	17.4					25.0	6.4	38.5	9.1	•
	Delay		83.0	121.2					187.7	15.5	188.9	19:5	
	LOS		F	F					F	В	F	В	
	Approach Delay		106.3						122.2			86.1	
	Approach LOS	•	F	٠.	• • •				·F			F	
	Intersection Summary			-					٠,				·

Area Type:

Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2: and 6:SETL, Start of Green

Natural Cycle: 130

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.57

Intersection Signal Delay: 108.8 Intersection Capacity Utilization 125.7%

									•			
Lane Group	SEL	SET	SER	NWL	NWF	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	<1	1	0	0	0	0.	1	1	1	1	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50.					50	50	50	50	
Trailing Detector (ft)	0	0	0					0	0	0	0:	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Satd. Flow (prot)	0	1770	1583	0	.0	. 0	0	1863	1583	1770	1863	0
Flt Permitted		0.950		:				• .		0.950		
Satd. Flow (perm)	0.	1770	1583	0	0	, 0	. 0	1863	1583	1770	1863	. 0
Right Turn on Red			Yes			Yes			Yes		-	Yes
Satd, Flow (RTOR)			108.			• •			282	7 × 2		
Link Speed (mph)		30			30		٠.	30			30	
Link Distance (ft)		443	•		610			882			1345	
Travel Time (s)		10.1			13.9	• •	•	20.0			30.6	•
Volume (vph)	457	. 0	585	0	0	. 0	. 0	1266	451	454	. 1035	0
Adj. Flow (vph)	497	0	636	0	0-	. 0	. 0	1376	490	493	1125	0
Lane Group Flow (vph)	0	497	636	0	0	0	. 0	1376	490	493	1125	. 0
Turn Type	Perm		Perm				•		Perm	Prot		•
Protected Phases	,	. 6 .			•			. 4		3	8	
Permitted Phases	6		6			-		•	4		•	
Detector Phases	6	6	6					. 4	. 4	. 3	. 8	
Minimum Initial (s)	4.0	4.0	4.0					4.0	4.0	4.0		
Minimum Split (s)	20.0	20.0	20.0					20.0	20.0	8.0	20.0	
Total Split (s)	28.0	28.0	28.0	0.0	0.0	0.0	0.0	44.0	44.0	18.0	62.0	0.0
Total Split (%)	31%	31%	31%	0%	0%	0%	0%	49%	49%	20%	69%	0%
Yellow Time (s)	3.5	3.5	3.5					3.5	3.5	3.5	3.5	•
All-Red Time (s)	0.5	0.5	0.5					0.5	0.5	0.5	0.5	
Lead/Lag								Lag	Lag	Lead		
Lead-Lag Optimize?						•	•	Yes	Yes	Yes		
	Coord	Coord						None	None		None	
Act Effct Green (s)		24.0	24.0				•	40.0	40.0	14.0	58.0	
Actuated g/C Ratio		0.27						0.44	0.44	0.16	0.64	
v/c Ratio		1.05	1.27					1,66	0.57	1.79	0.94	
Uniform Delay, d1		33.0	25.9					25.0	7.0	38.0	14.3	
Delay		80.6	136.0					222.4	13.8	161.5	30:6	
LOS		F	F			: .		F	В	F	C	
Approach Delay		111.7			•.			167.7			70.5	
Approach LOS		F	•					F			E	
				1				•				

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2: and 6:SETL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.79

Intersection Signal Delay: 119.9
Intersection Capacity Utilization 137.3%

												,
Lane Group	SEL	SET	SER	NWL	. NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	0	0	0	<1		1	1	0		1	
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)		•		50	50	50	50	50	.,.		50	
Trailing Detector (ft)		•		0	0	0	0	0 -			0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Satd. Flow (prot)	0	0	Ö	0	1770	1583	1770	1863	0.	0	1863	1583
Flt Permitted			:		0.950		0.950			-	, , , ,	, 555,
Satd. Flow (perm)	. 0	0	0	∘. 0	1770	1583	1770	1863	· · 0	0	1863	1583
Right Turn on Red			Yes			Yes			Yes	_		Yes
Satd. Flow (RTOR)						250				•		223
Link Speed (mph)		30	•		30	•		30			30	
Link Distance (ft)		550		•	849			1345		•	698	
Travel Time (s)		12.5	•	:	19.3			30.6		. •	15.9	
Volume (vph)	0	. 0.	. 0	389	. 0	460	569	594	0.	0	554	197
Adj. Flow (vph)	. 0	0	0	519	. 0	613	7.59	742	Ō	ō	692	246
Lane Group Flow (vph)	0	0	. 0	0	519	613	759	742	ū	ō	692	246
Tum Type				Perm		Perm	Prot			.•		Perm
Protected Phases					2		7	4			8	
Permitted Phases				2	•	2						. 8
Detector Phases				2	. 2	2	- 7	4			8.	8
Minimum Initial (s)				4.0	4.0		4.0	4.0			4.0	4.0
Minimum Split (s)				20.0	20.0	20.0	8.0	20.0			20.0	20.0
Total Split (s)	0.0	0.0	0.0	27.0	27.0	27.0	32.0	63.0	0.0	0.0	31.0	31.0
Total Split (%)	0%	0%	0%	30%	30%	30%	36%	70%	0%	0%	34%	34%
Yellow Time (s)			•	3.5	3.5	3.5		3.5			3.5	3.5
All-Red Time (s)		•		0.5	0.5	0.5	0.5	0.5			0.5	0.5
Lead/Lag					:		Lead	-4			Lag	Lag
Lead-Lag Optimize?			•				Yes		•		Yes	Yes
Recall Mode			(Coord	Coord	Coord	None	None		•	None	None
Act Effct Green (s)					23.0	23.0	28.0	59.0			27.0	27.0
Actuated g/C Ratio					0.26	0.26	0.31	0.66			0.30	0.30
v/c Ratio					1.15	1.04	1.38	0.61			1.24	0.39
Uniform Delay, d1					33.5	19.3	31.0.	8.9			31.5	2.1
Delay					106.6	60.6	106.0	16.8			130.0	4.9
LOS				•	F	Ε	F				F	A
Approach Delay					81.7			61.9			97.2	, ,
Approach LOS	٠.			•	F			E			F	
Intersection Summary	· .										•	٠.

Area Type:

e: Othe

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.38

Intersection Signal Delay: 77.5

Intersection Capacity Utilization 117.2%

						٠		•				
Lane Group	SEL	SET	SER	NWL	NWT_	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	0	0	0	<1	1	1	. 1	0	0	.1	1000
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900 4.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4:0	4.0	4.0	4.0 50
Leading Detector (ft)				50	50	50	50	.50			50 0	0
Trailing Detector (ft)				. 0	.0	. 0.	. 0	0			υ,	. <u>9</u>
Turning Speed (mph)	. 15	•	9	15	• •	. 8	15		9	15	4000	1583
Satd. Flow (prot)	Ō	0	. 0	0	1770	1583	1770	1863	0	Ö	1863	1203
Fit Permitted		• "			0.950		0.950			_	4000	1500
Satd. Flow (perm)	0	0	0	0.	1770	1583	1770	1863	. 0	0	1863	1583
Right Turn on Red	Ŭ		Yes			Yes		•	Yes		•	Yes
						261	• .					246
Satd. Flow (RTOR)		30			30			30			30	
Link Speed (mph)		550			849			1345	·		698	
Link Distance (ft)	•	12.5			19.3			30.6			15.9	
Travel Time (s)	0	0	0	769	0	547	891	638	0	0	1139	
Volume (vph)	0	. 0	Ö	836	O.	595	938	672	0	. 0	1225	449
Adj. Flow (vph)	0	0	Ö	0	836	595	938	672	0	0	1225	449
Lane Group Flow (vph)		Ű		Perm		Perm	Prot					Perm
Turn Type			. · .	• • • • • • • • • • • • • • • • • • • •	. 2		7	4			8	_
Protected Phases				2		2						8
Permitted Phases				2	. 2	2	7	4			- 8	8
Detector Phases				4.0	4.0		4.0	4.0		*	4.0	4.0
Minimum Initial (s)				20.0	20.0		8.0	20.0			20.0	20.0
Minimum Split (s)	0.0	0.0	0.0	31.0	31.0		24.0	59.0		0.0	35.0	35.0
Total Split (s)	0.0	0.0	0%	34%	34%		27%	66%	. 0%	. 0%	39%	39%
Total Split (%)	U 76	U 70	. 0 /0	3.5			3.5	3.5		•	3.5	
Yellow Time (s)	•			0.5		•		0.5		•	0.5	
All-Red Time (s)				0.0	0.0		Lead	•		•	Lag	
Lead/Lag							Yes		·	•	Yes	
Lead-Lag Optimize?				Coord	Coord	Coord					None	
Recall Mode				Coord	27.0				-		31.0	
Act Effct Green (s)					0.30						0.34	
Actuated g/C Ratio					1.57						1.91	
v/c Ratio					31.5					•	29.5	
Uniform Delay, d1					209.4						260.5	
Delay		•			203.4 F			В		•	F	
LOS				*	134.0		•	149.0			193.6	
Approach Delay	•				154.C		•	F			· F	:
Approach LOS					1							
		•	•			•						

Area Type:

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 2.39

Intersection Signal Delay: 160.3

Intersection Capacity Utilization 172.7%

Level of service for ramp-freeway junction areas of influence C

Merge Analysis

H7

Level of service for ramp-freeway junction areas of influence C

48

Density, D = 5.475 + 0.00734 v + 0.0078 v

R

Level of service for ramp-freeway junction areas of influence

H9

- 0.00627 L

12

20.2

pc/mi/ln

Level of service for ramp-freeway junction areas of influence C

Merge Analysis

No Fi 2898 4400 No 12 4378 9600 No FO F 989 v 2000 No R

12

Level of Service Determination (if not F)

Density, D = 4.252 + 0.0086 v - 0.009 L = 24.7

Level of service for ramp-freeway junction areas of influence C

pc/mi/ln

```
__Diverge Analysis
Analyst:
                        bh
Agency/Co.:
                         Darnell
Date performed:
                         11/17/2005
Analysis time period: PM
                        I-15 Northbound Off
Freeway/Dir of Travel:
Junction:
                         I-15 North Off/State Route 76
Jurisdiction:
                         County SD/Caltrans
Analysis Year:
                         2030 - No Project
Description: 051008 - Gregory Canyon
                                   Freeway Data
Type of analysis
                                             Diverge
Number of lanes in freeway
Free-flow speed on freeway
                                             70.0
                                                            mph
Volume on freeway
                                             4600
                                                            vph
                                  Off Ramp Data
Side of freeway
                                             Right
Number of lanes in ramp
                                             1 .
                                             35.0
Free-Flow speed on ramp
                                                            mph
Volume on ramp
                                             1315
                                                            vph
Length of first accel/decel lane
                                             500
                                                            ft
Length of second accel/decel lane
                        _Adjacent Ramp Data (if one exists)
Does adjacent ramp exist?
Volume on adjacent ramp
                                                            ψph
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
                                                            ft
                    _Conversion to pc/h Under Base Conditions
Junction Components
                                        Freeway
                                                    Ramp
                                                                Adjacent
                                                                Ramp
Volume, V (vph)
                                        4600
                                                    1315
                                                                           vph
Peak-hour factor, PHF
                                        0.90
                                                    0.90
Peak 15-min volume, v15
                                        1278
                                                    365
Trucks and buses
                                        .10
                                                    10
Recreational vehicles
                                        0
                                                    0
                                                                           윰
Terrain type:
                                        Level
                                                    Level
     Grade
                                        0.00
                                                    0.00
     Length
                                        0.00
                                                    0.00
                                                mi
                                                            mi
                                                                        mi
Trucks and buses PCE, ET
                                        1.5
                                                    1.5
Recreational vehicle PCE, ER
                                                    1.2
                                        1,2
Heavy vehicle adjustment, fHV
                                        0.952
                                                    0.952
Driver population factor, fP
                                        1.00
                                                    1.00
Flow rate, vp
                                        5367
                                                    1534
                                                                          pcph
                         Estimation of V12 Diverge Areas
                                   (Equation 25-8 or 25-9)
                   EQ
                          0.436
                  P
                                  Using Equation 8
                   FD
                          + (v - v) P = 3205
                        R
                             F R FD
                               _Capacity Checks
                           Actual
                                          Maximum
                                                          LOS F?
                           5367
                                          9600
                                                          No
                           3205
                                          4400
                                                          No
                           3833
                                         9600
                                                          No
          F
               R
                           1534
                                          2000
                                                          No
                 Level of Service Determination (if not F)
Density,
                       D = 4.252 + 0.0086 v - 0.009 L
                                                                       pc/mi/ln ·
```

Level of service for ramp-freeway junction areas of influence C

H12

Analyst: bh Agency/Co.: Darnell Date performed: 11/17/2005 AM

Analysis time period:

Freeway/Dir of Travel: I-15 Southbound Off

Junction: I-15 South Off/State Route 76 County SD/Caltrans 2030 - No Project Jurisdiction:

Analysis Year: Description: 051008 - Gregory Canyon

Freeway	Dat
rreeway	שמ

Type of analysis	Diverge	
Number of lanes in freeway	4	
Free-flow speed on freeway	70.0	mph
Volume on freeway	4600	vph

Off Ramp Data

•		
Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	35.0	mph
Volume on ramp	1077	vph
Length of first accel/decel lane	500	ft
Length of second accel/decel lane		Ít

_Adjacent Ramp Data (if one exists)

Does adjacent ramp exist? Volume on adjacent ramp Position of adjacent ramp Type of adjacent ramp Distance to adjacent ramp

vph

ft

Conversion	to	pc/h	Under	Base	Conditions_
------------	----	------	-------	------	-------------

Junction Components		Freeway	Ramp	Adjacent Ramp	
.Volume, V (vph)		4600	1077	_	$\mathbf{v}_{\mathbf{p}\mathbf{h}}$
Peak-hour factor, PHF		0.90	0.90		-
Peak 15-min volume, v15		1278	. 299		v
Trucks and buses		10	10		윰
Recreational vehicles		0	0		ક
Terrain type:		Level	Level		
Grade		0.00 %	0.00	8 9	ł.
Length		0.00 mi	0.00	mi r	ni
Trucks and buses PCE, ET		1.5	1.5		
Recreational vehicle PCE,	ER	1.2	1.2		
Heavy vehicle adjustment,	fHV	0.952	0.952		
Driver population factor,	fP	1.00	1.00		
Flow rate, vp		5367	1257		pcph

Estimation of V12 Diverge Areas

(Equation 25-8 or 25-9) EQ P. = 0.436 Using Equation 8 (v - v) P = 3049pc/h 12 F R FD

_Capacity Checks

	Actual	Maximum	LOS F?	
v = v	5367	9600	No	
Fi F		• •		
v	3049	4400	No	
12		• •	•	
$\mathbf{a} = \mathbf{a} \cdot - \mathbf{a}$	4110	9600	No	
FO F R				
v	1257	2000	No	
R		•		

Level of Service Determination (if not F)

Density, D = 4.252 + 0.0086 vpc/mi/ln - 0.009 L 26.0 12

Level of service for ramp-freeway junction areas of influence C

Diverge Analysis Analyst: bh Agency/Co.: Darnell Date performed: 11/17/2005 Analysis time period: PM Freeway/Dir of Travel: I-15 Southbound Off I-15 South Off/State Route 76 Junction: Jurisdiction: County SD/Caltrans Analysis Year: 2030 - NoProject Description: 051008 - Gregory Canyon Freeway Data Type of analysis Diverge Number of lanes in freeway Free-flow speed on freeway 70.0 mph Volume on freeway 4600 vph Off Ramp Data Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 35.0 mph Volume on ramp 1042 vph Length of first accel/decel lane 500 ft Length of second accel/decel lane _Adjacent Ramp Data (if one exists) Does adjacent ramp exist? No Volume on adjacent ramp vph Position of adjacent ramp Type of adjacent ramp Distance to adjacent ramp ft _Conversion to pc/h Under Base Conditions Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 4600 1042 vph Peak-hour factor, PHF 0.90 0.90 Peak 15-min volume, v15 1278 289 Trucks and buses 10 10 Recreational vehicles 0 0 Terrain type: Level Level 0.00 Grade 0.00 Length 0.00 mi 0.00 mi mi Trucks and buses PCE, ET 1,5 1.5 Recreational vehicle PCE, ER 1.2 1.2 Heavy vehicle adjustment, fHV 0.952 0.952-Driver population factor, fP 1.00 1.00 Flow rate, vp 5367 1216 pcph Estimation of V12 Diverge Areas (Equation 25-8 or 25-9) EQ P 0.436 Using Equation 8 FD + (v - v) P = 3026F R FD Capacity Checks Actual Maximum LOS F? 5367 9600 No Fi 3026 4400 No 4151 9600 No FO F 1216 2000 No R Level of Service Determination (if not F) Density, D = 4.252 + 0.0086 v - 0.00925.8 pc/mi/ln ·

Level of service for ramp-freeway junction areas of influence C

414

APPENDIX I Year 2030 (With Project) Worksheets ·

•										. ,		
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	<1>	Ö	0	<1	1	1		0	1	2	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50	50	50	50		50		50
Trailing Detector (ft)	0	.0		0	0	. 0	0			O	. 0	. 0
Turning Speed (mph)	15		9	15		9	15		9	15	· · · .	. 9
Satd. Flow (prot)	0	1772	. 0	0	1824	1583	1770	3504	0	1770	3539	1583
Flt Permitted		0,966			0.979		0.950			0.950		
Satd. Flow (perm)	0	1772	. 0.	0	1824	1583	1770	3504	0	1770	3539	1583
Right Turn on Red		*	Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		7				103		8				143
Link Speed (mph)	•	30			- 30			30			30	
Link Distance (ft)		556			748			915		•	882	
Travel Time (s)		12.6			17.0			20.8	•		20.0	
Volume (vph)	.402	108	62	116	156	95	44	894	63	74	755	132
Adj. Flow (vph)	437	117	. 67	126	170	103	48	972	68	80	821	143
Lane Group Flow (vph)		621	0	0	296	103	48	1040	0	80	821	143
Turn Type	Split	•		Split -		Perm	Prot			Prot	•	Over
Protected Phases	6	. 6		. 2	2		7	4		3	8	6
Permitted Phases						. 2		•				
Detector Phases	6	6		2	2	2	7	4		. 3	. 8	- 6
Minimum Initial (s)	4.0	4.0		·· 4.0	4.0	4.0	4.0	4.0	•	4.0	4.0	4.0
Minimum Split (s)	20.0	20.0		20.0	20.0	20.0	8.0	20.0		8.0	20.0	20.0
Total Split (s)	33.0	33.0	0.0	21.0	21.0	21.0	8.0	28.0	0.0	0.8	28.0	33.0
Total Split (%)	. 37%	37%	0%	23%	23%	23%	9%	31%	0%		31%	37%
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	- 3.5		3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	-	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5
Lead/Lag				•			Lead	Lag		Lead	. Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None		!	Coord			None	None		None	None	None
Act Effct Green (s)		29.0			17.0	17.0	4.0	24.0	٠	4.0	25.6	29.0
Actuated g/C Ratio		0.32			0.19	0.19	0.04	0.27		0.04	0.28	0.32
v/c Ratio		1.08			0.86	0.27	0.61	1.11		1.01	0.82	0.24
Uniform Delay, d1		30.1			36.1	0.0	43.0	32.3		43.0	30.0	0.0
Delay		81.6			49.3	7.0	59.5	86.4		85.7	24.4	6.8
LOS		F			D	Α	E	F	:	F	C	Α
Approach Delay		81.6		•. •	38.4		•	85.2			26.7	
Approach LOS		F			D	•		F			C	
Intersection Summary		· .		•						٠.		

Area Type:

Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.11
Intersection Signal Delay: 59.2

Intersection Capacity Utilization 97.2%

10. Highway 555 & C	ruco I											
	· .	or T	SER	NWL	NWT	NWR	NEL	NET	NER.	SWL	SWT	SWR
Lane Group	SEL	SET	OER O	14445	<1	1	1	2>	0	1	. 2	1
Lane Configurations	0	<1>	1900	1900	1900		1900	1900	1900	.1900	1900	1900
ideal Flow (vphpl)	1900	1900	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Total Lost Time (s)	4.0	4.0	4.0	50	50	50	50	50	•	50	50	50
Leading Detector (ft)	50	50		0	0	0	0	0		0	0.	0
Trailing Detector (ft)	0	0	9	15	•	9	15		. 9	15		9
Turning Speed (mph)	15	4700	. 0	0	1829		1770	3500	. 0		3539	1583
Satd. Flow (prot)	. 0	.1763.	u	U	0.982		0.950	·		0.950		
Flt Permitted	_	0.969	0	0		1583	1770	3500	. 0	1770.	3539	1583
Satd. Flow (perm)	. 0	1763 ⁻	Yes	U .	1020	Yes			Yes			Yes
Right Turn on Red		44	162			52	•	9				334
Satd. Flow (RTOR)		11			30	 .		30			30	
Link Speed (mph)		30			748	. ,		915			882	
Link Distance (ft)		556			17.0			20.8			20.0	
Travel Time (s)		12.6	83	77	131	48	. 84	1071	81	67	1007	307
Volume (vph)	315	93	90	84	142	52		1164	88	73	1095	334
Adj. Flow (vph)	342	101	90	.0		52		1252	. 0	73	1095	334
Lane Group Flow (vph)	0	533	U	Split		Permi				Prot		Over
Turn Type	Split	6		2	2		. 7	- 4	• •	3	8	6
Protected Phases	6	U		-	_	2		•		•		•
Permitted Phases	6	. 6		2	2	2	. 7	4		3	8	
Detector Phases	4.0	4.0		4.0		4.0	4.0	4.0		4.0	4.0	
Minimum Initial (s)	20.0	20.0		20.0		20.0	8.0	20.0		0.8	20.0	
Minimum Split (s)	29.0	29.0	0.0			20.0	9.0				32.0	
Total Split (s)	32%	32%				22%	10%		0%		36%	
Total Split (%)	3.5			3.5		3.5	- 3.5			3.5	3.5	
Yellow Time (s)	5.5 0.5			0.5		0.5	0.5		•	0.5	0.5	
 All-Red Time (s)	0.5	0.0					Lead		•	Lead	Lag	
Lead/Lag					•	•	Yes			Yes	Yes	
Lead-Lag Optimize?	None	None		Coord	Coord	Coord	None			. None		
Recall Mode	140110	25.0		• .	16.0	16.0	5.0			4.0	28.0	
Act Effct Green (s)		0.28			0,18	0.18				0.04		
Actuated g/C Ratio	•	1.07			0.70	0.16				0.92		
v/c Ratio		31.8			34.7	0.0				42.8		
Uniform Delay, d1		83.0			. 38.1					48.5		
Delay LOS		F			C		, F			D	24.	
Approach Delay		83.0			32.8			83.7			24.	
Approach LOS		F			, C	;		F	• .			•
Whiteasi ree	•		•					,			·	

Area Type:

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.10 Intersection Signal Delay: 55.5

Intersection Capacity Utilization 94.2%

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	. 0	<1	1	0	0	. 0	0	. 1	1	1	. 1	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	. 4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Leading Detector (ft)	50	50	50					50	50	. 50	50	
Trailing Detector (ft)	0	. 0	. 0					. 0	0	0	. 0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Satd. Flow (prot)	0	. 1770	1583	0	0	. 0	. 0	1863	1583	1770	1863	0
Flt Permitted		0.950				•				0.950		_
Satd. Flow (perm)	0	1770	1583	. 0	- 0	0	0	1863	1583	1770	1863	Ō
Right Tum on Red			Yes		•	Yes			Yes			Yes
Satd. Flow (RTOR)			300						483	• • •	•	
Link Speed (mph)		30	-		30		•	30			30	
Link Distance (ft)		443			610	•		882	•		1345	
Travel Time (s)	,	10.1	·		13.9			20.0		•	30:6	
Volume (vph)	430	0	657	0	0	0	. 0	986	601	400	503	0
Adj. Flow (vph)	538	0.	821	0	0	0	0.	1232	751	500	629	, 0
Lane Group Flow (vph)	0,	538	821	. 0.	0	· 0.	0	1232	751	500	629	0
Turn Type	Perm		Perm.		•				Perm	Prot		ŭ
Protected Phases		6		•				4		3	8	
Permitted Phases	6		6						4			
Detector Phases	. 6	6	6					4	4	- 3	8	
Minimum Initial (s)	, 4.0	4.0	4.0			•		4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0			•		20.0	20.0	8.0	20.0	-
Total Split (s)	29.0	29.0	29.0	0.0	0.0	0.0	0,0	44.0	44.0	17.0	61.0	0.0
Total Split (%)	32%	32%	32%	0%	0%	0%	0%	49%	49%	19%	68%	0%
Yellow Time (s)	3.5	3.5	3.5		·			3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5					0.5	0.5	0.5	0.5	
Lead/Lag	•		•			•		Lag	Lag	Lead		•
Lead-Lag Optimize?								Yes	Yes	Yes		
	Coord	Coord	Coord					None	None	None	None	
Act Effct Green (s)		25.0	25.0					40.0	40.0	13.0	57.0	
Actuated g/C Ratio		0.28	0.28					0.44	0.44	0.14	0.63	
v/c Ratio		1.09	1.25	•			•	1.49	0.77	1.95	0.53	
Uniform Delay, d1		32.5	17.6					25.0	6.6	38.5	9.1	
Delay		89.9	124.3					190.4	15.7	242.7	20.6	
LOS		F	. F					F	В	F	C	
Approach Delay		110.7						124.3	_		118.9	
Approach LOS		F			_	_	•	F			F	
Intersection Summary			·				•				•	•

Area Type:

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2: and 6:SETL, Start of Green

Natural Cycle: 140

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.95

Intersection Signal Delay: 118.8 Intersection Capacity Utilization 132.3%

		•										
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL		SWR
Lane Configurations	0	<1	1	0	0-	0.	0	1	. 1	1	1	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50			,		50	. 50	501	50	
Trailing Detector (ft)	0	0	. 0					0	0	0	0	^
Turning Speed (mph)	15	•	9	15		9	15		9	15	4:000	9
Satd. Flow (prot)	0	1770	1583	. 0	0	. 0	0	1863	1583	1770	1863	. 0
FIt Permitted		0.950								0.950	4000	0
Satd. Flow (perm)	0	1770	1583	0	. 0	. 0	0	1863	1583	1770	1863	. 0 Yes
Right Turn on Red			Yes			Yes	• '		Yes			165
Satd. Flow (RTOR)			106						280		20	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		443			610			882	. :		1345	•
Travel Time (s)		10.1	·	•	13.9			20.0		F 10	30.6	0
Volume (vph)	469	0	585	0		0	0	1276	451	548	1045	0 0
Adj. Flow (vph)	.: 510	. 0	636	0	0.	0	O	1387	490	596	1136	0
Lane Group Flow (vph)	0	510	636	0.	. 0	0	0	1387	490	596	1136	U
Turn Type	Perm		Perm	•					Perm	Prot	8	•
Protected Phases		6					•	4		3	0	
Permitted Phases	6	:	6					4	4	3	. 8	
Detector Phases	.6	. 6	6			-		4	4	4.0	4.0	,
Minimum Initial (s)	4.0	4.0	4.0					4.0	4.0 20.0		20.0	
Minimum Split (s)	20.0		20.0			a · a		20.0	44.0	18.0	62.0	0.0
Total Split (s)	28.0	28.0	28.0	0.0	0.0		0.0	44.0		20%	69%	. 0%
Total Split (%)	31%	31%	31%	0%	0%	0%	0%	49%	49% 3.5	3.5	3.5	. 070
Yellow Time (s)	3.5		3.5					3.5	0.5			
All-Red Time (s)	0.5	0.5	0.5					0.5		Lead	. 0,5	
Lead/Lag								Lag	Lag Yes	Yes		•
Lead-Lag Optimize?								Yes		None	None	
Recall Mode	Coord	Coord					•	None 40.0	None 40.0	14.0	58.0	
Act Effct Green (s)		24.0	24.0						0.44		0.64	
Actuated g/C Ratio		0.27	0.27				**	0.44	0.44	2.17	0.95	
v/c Ratio		1.08	1.27					1.68 25.0	7.1	38.0		
Uniform Delay, d1		33.0	26.0		•			25.0 216.6	13.9			
Delay		87.4	136.9					210.0 F			01.5 C	
LOS		F	F				•	163.7			89.7	
Approach Delay		114.9					•	103.7 F			. 05.7 F	
Approach LOS		F						Г		•	•	

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2: and 6:SETL, Start of Green

Natural Cycle: 130

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 2.17

Intersection Signal Delay: 125.0

Intersection Capacity Utilization 144.2%

Lane Group							•					`.	
Lane Configurations 0	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Incomposition Incompositio		0	0	. 0	0	<1	1	1	1				
Total Lost Time (s)	ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900				•	
Leading Detector (ft)	Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0						
Training Detector (ft) Turning Speed (mph) Satd. Flow (prot) Satd.	Leading Detector (ft)				- 50	. 50							
Turning Speed (mph)	Trailing Detector (ft)		•		. 0	0	. 0	.0.					
Satd. Flow (prot) 0 0 0 0 1770 1583 1770 1863 0 0 1863 1583 Flt Permitted 0 0 0 0 1770 1583 1770 1863 0 0 1863 1583 Satd. Flow (perm) 0 0 0 0 1770 1583 1770 1863 0 0 1863 1583 Right Tum on Red Yes Yes Yes Yes Yes Yes Yes 203 Link Speed (mph) 30 30 30 30 30 159 120 159 159 1345 698 159 159 159 159 179 759 766 0 0 602 207 207 20 20 205 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200		15		9	15		9			9	15	· · ·	
File Permitted Satd. Flow (perm) O O O O 1770 1583 1770 1863 O O 1863 1583 1583 1780 1865 O O 1865 1583 1780 1865 O O 1865 1583 1780 1865 O O 1865 1583 1780 1865 O O 1865 1583 1780 1865 O O 1865 1583 1780 1865 O O 1865	Satd. Flow (prot)	0	. 0	. 0	. 0	1770	1583		1863			1863	
Right Tum on Red Yes 203			* :			0.950							
Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Yes Yes 203 Allank Speed (mph) 30 40 20 20 20 30 30 69 613 0 682 20 2	Satd. Flow (perm)	. 0	0	· 0	. 0	1770	. 1583	1770	1863	· ¨ 0	0	1863	1583
Satd, Flow (RTOR) Link Speed (mph) 30 30 30 30 Link Distance (ft) 550 849 71345 698 717avel Time (s) 12.5 19.3 Volume (vph) 0 0 0 389 0 539 569 613 0 0 642 207 Adj. Flow (vph) 0 0 0 0 519 0 719 759 766 0 0 802 259 Lane Group Flow (vph) 0 0 0 0 519 779 759 766 0 0 802 259 Turn Type Perm Protected Phases Permitted Phases Permitted Phases Permitted Phases Permitted Splates Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio V/C Ratio Uniform Delay, d1 Delay Approach Delay Approach Delay Approach Los Results Result	Right Turn on Red			Yes							Ţ.		
Link Speed (mph) 30 30 30 30 30 30 30 30 10 10 10 10 10 10 10 10 10 10 10 10 10	Satd, Flow (RTOR)			•	*	٠.							
Link Distance (ft) 550 849 1345 698 Travel Time (s) 12.5 19.3 30.6 15.9 Volume (vph) 0 0 389 0 539 569 613 0 642 207 Adj. Flow (vph) 0 0 519 0 719 759 766 0 802 259 Lane Group Flow (vph) 0 0 0 519 719 759 766 0 802 259 Turn Type Perm Perm<	Link Speed (mph)		30 .			30			30	•		30	200
Travel Time (s)	Link Distance (ft)		550			849							
Volume (vph) 0 0 0 389 0 539 569 613 0 0 642 207 Adj. Flow (vph) 0 0 0 519 0 719 759 766 0 0 802 259 Lane Group Flow (vph) 0 0 0 519 719 759 766 0 0 802 259 Turn Type Perm Perm Protected Phases 2 2 7 4 8 8 Permitted Phases 2 2 2 2 7 4 8 8 Detector Phases 2 2 2 2 7 4 8 8 Minimum Initial (s) 4.0	Travel Time (s)	, •	12.5		•								
Adj. Flow (vph)	Volume (vph)	0	O	Ō	389		539	569		0	0		207
Lane Group Flow (vph) 0 0 0 0 519 719 759 766 0 0 802 259 Turn Type	Adj. Flow (vph)	0	. 0	0	519								
Turn Type Perm Perm Prot Perm Perm Protected Phases 2 2 2 2 8 Detector Phases 2 2 2 7 4 8 8 Minimum Initial (s) 4.0 <td>Lane Group Flow (vph)</td> <td>0</td> <td>. 0</td> <td>0</td> <td>0</td> <td>519</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Lane Group Flow (vph)	0	. 0	0	0	519							
Profected Phases Permitted Phases Detector Phases Detector Phases Difference of the profess of t			•		Perm		Perm				, =		
Permitted Phases	Protected Phases			•		. 2			4			8	
Detector Phases 2 2 2 2 7 4 8 8 Minimum Initial (s) 4.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0<	Permitted Phases				2		2						8
Minimum Initial (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 20.0 <td>Detector Phases</td> <td></td> <td></td> <td></td> <td></td> <td>- 2</td> <td></td> <td>7</td> <td>4</td> <td></td> <td></td> <td>8</td> <td></td>	Detector Phases					- 2		7	4			8	
Minimum Split (s) 20.0 31.0 <td>Minimum Initial (s)</td> <td></td> <td></td> <td></td> <td>4.0</td> <td>4.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Minimum Initial (s)				4.0	4.0							
Total Split (s) 0.0 0.0 0.0 27.0 27.0 27.0 32.0 63.0 0.0 0.0 31.0 31.0 Total Split (%) 0% 0% 0% 30% 30% 30% 36% 70% 0% 0% 34% 34% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Minimum Split (s)				20.0	20.0	20.0						
Total Split (%)	Total Split (s)	0.0	0.0	0.0	27.0	27.0				0.0	0.0		
Yellow Time (s) 3.5	Total Split (%)	0%	0%	0%	30%	30%	30%						
All-Red Time (s)		•			3.5	3.5	3.5						
Lead/Lag Lead Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Yes Recall Mode Coord Coord Coord None 12.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	All-Red Time (s)		•		0.5	0.5	0.5	0.5		•			
Lead-Lag Optimize? Yes Page F F F F F F F F <td>Lead/Lag</td> <td></td> <td></td> <td>,</td> <td>. •</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Lead/Lag			,	. •								
Recall Mode Coord Coord Coord Coord None None None None Act Effct Green (s) 23.0 23.0 28.0 59.0 27.0 27.0 Actuated g/C Ratio 0.26 0.26 0.31 0.66 0,30 0.30 V/c Ratio 1.15 1.24 1.38 0.63 1.43 0.42 Uniform Delay, d1 33.5 19.8 31.0 9.1 31.5 5.0 Delay 106.6 122.1 105.3 17.1 180.3 6.7 LOS F F F B F A Approach LOS F E 61.0 137.9 F	Lead-Lag Optimize?												
Act Effct Green (s) 23.0 23.0 28.0 59.0 27.0 27.0 Actuated g/C Ratio 0.26 0.26 0.31 0.66 0,30 0.30 v/c Ratio 1.15 1.24 1.38 0.63 1.43 0.42 Uniform Delay, d1 33.5 19.8 31.0 9.1 31.5 5.0 Delay 106.6 122.1 105.3 17.1 180.3 6.7 LOS F F F B F A Approach Delay 115.6 61.0 137.9 Approach LOS F E F F	Recall Mode		•		Coord	Coord	Coord		None				
Actuated g/C Ratio 0.26 0.26 0.31 0.66 0,30 0.30 V/c Ratio 1.15 1.24 1.38 0.63 1.43 0.42 Uniform Delay, d1 33.5 19.8 31.0 9.1 31.5 5.0 Delay 106.6 122.1 105.3 17.1 180.3 6.7 LOS F F F B F A Approach Delay 115.6 61.0 137.9 Approach LOS F E F F	Act Effct Green (s)										•		
v/c Ratio 1.15 1.24 1.38 0.63 1.43 0.42 Uniform Delay, d1 33.5 19.8 31.0 9.1 31.5 5.0 Delay 106.6 122.1 105.3 17.1 180.3 6.7 LOS F F F B F A Approach Delay 115.6 61.0 137.9 Approach LOS F E F	Actuated g/C Ratio			•		0.26		•					
Uniform Delay, d1 33.5 19.8 31.0 9.1 31.5 5.0 Delay 106.6 122.1 105.3 17.1 180.3 6.7 LOS F F F B F A Approach Delay 115.6 61.0 137.9 F <td>v/c Ratio</td> <td></td> <td></td> <td>•</td> <td></td> <td>1.15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	v/c Ratio			•		1.15							
Delay 106.6 122.1 105.3 17.1 180.3 6.7 LOS F F F B F A Approach Delay 115.6 61.0 137.9 F <td></td> <td></td> <td></td> <td></td> <td></td> <td>33.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						33.5							
LOS F F B F A Approach Delay 115.6 61.0 137.9 Approach LOS F E F					•								
Approach Delay 115.6 61.0 137.9 Approach LOS F E F	LOS .		•										
Approach LOS F E F	Approach Delay						-						, ,
	Approach LOS							•		,			
	Intersection Summary								,			i.	

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:, Start of Green

Natural Cycle: 130

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.43

Intersection Signal Delay: 100.0

Intersection Capacity Utilization 123.0%

Intersection LOS: F ICU Level of Service H

darnelsand-sx51

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	0	0	0	0	<1	1 '	- 1	- 1	0	0	1	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	. 4.0
Leading Detector (ft)	-		•	50	50	-50	50	50			50	50
Trailing Detector (ft)				0	0	0	0.	0			0	0
Turning Speed (mph)	15	•	. 9	15		9	15		. 9	15		9
Satd. Flow (prot)	. 0	0	0	0	1770	1583	1770	1863	. 0	. 0	1,863	1583
Fit Permitted		•		**	0.950		0.950	• .		•		
Satd, Flow (perm)	0	0	0	0	1770	1583	1770	1863	. 0	. 0	1863	1583
Right Tum on Red		•	Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					•	248						232
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		550			849			1345			698	
Travel Time (s)		12.5		-	19.3			30.6	•		15.9	•
	. 0	0	. 0	769	0	640	. 891	660	0	0	1243	425
Volume (vph)	0	0	. 0	836	0	696	938	695	0	. 0	1337	462
Adj. Flow (vph)	Ö	0	Ō	0	836	696	938	695	0	. 0	1337	462
Lane Group Flow (vph)		J	Ū	Perm		Perm	Prot					Perm
Turn Type Protected Phases		•			2		7	. 4			8	٠
Permitted Phases				2		. 2						8
				2	2	2	. 7	4			8	8
Detector Phases				4.0	4.0	4.0	4.0	`4.0			4.0	4.0
Minimum Initial (s)				20.0	20.0	20.0	8.0	20.0			20.0	20.0
Minimum Split (s)	0.0	0.0	0.0	31.0	31.0	31.0	24.0	59.0	0.0	0.0	35.0	35.0
Total Split (s)	0.5	0%	0%.	34%	34%	34%	27%	66%	0%	0%	39%	39%
Total Split (%)	· · · · · · ·	0 70.		3.5	3.5	3.5	3.5	3.5			3.5	3.5
Yellow Time (s)	•	•		0.5	0.5	0.5	0.5	0.5			0.5	0.5
All-Red Time (s)				0.0			Lead				Lag	Lag
Lead/Lag							Yes		·		Yes	Yes
Lead-Lag Optimize?				Coord	Coord	Coord	None	None			None	None
Recall Mode		•		Ooola	27.0	27,0	20.0	55.0			31.0	31.0
Act Effct Green (s)					0.30	0.30	0.22	0.61			0.34	0.34
Actuated g/C Ratio		•			1.57	1.07	2.39	0.61		•	2.08	0.66
v/c Ratio					31.5	19.5	35.0	10.9	•		29.5	11.6
Uniform Delay, d1					209.4			20.1			280.9	12.4
Delay		,			200.4 F						F	В
LOS					145.7		•	147.0	•		211.9	
Approach Delay					F			F			· F	
Approach LOS					•							

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 2.39

Intersection Signal Delay: 170.1

Intersection Capacity Utilization 178.6%

Intersection LOS: F

ICU Level of Service H

HODEOVV. VIIDEGHALLEGA LHOOLDGOCLOHO MOLOGOO 1.14

TWO-WAY STOP CONTROL SUMMARY

Analyst: bh

Agency/Co.: Darnell
Date Performed: 11/16/2005

Analysis Time Period: AM

Intersection: SR-76/Project Access

EΒ

1 .

Jurisdiction: County SD

Units: U. S. Customary

Approach

Movement

v (vph)

v/c

Los

C(m) (vph)

Lane Config

95% queue length Control Delay

Approach Delay Approach LOS

Analysis Year: 2030+PROJECT Project ID: 051008 Gregory Cyn East/West Street: SR-76

North/South Street: Project Access

Intersection Orientation: EW

Study period (hrs): 0.25

	hicle Volu		Adjus	Tme:				
Major Street: Approach		tbound	_	_		tbound		
Movement	1	2	3	ļ	4	5 .	. 6	
·	L	T	R	i	L	T	R	
Volume		820	98		5	591		
Peak-Hour Factor, PHF		1.00	1.00		1.00	1.00		
Hourly Flow Rate, HFR		820	98		5	591		
Percent Heavy Vehicles					0			•
Median Type/Storage	TWLTL				/ 5			
RT Channelized?								
Lanes		1 0			0	1.	•	
Configuration		TR			LT	1		
Upstream Signal?		No				No		.•
Minor Street: Approach	Nor	thbound	· · · · · · · · · · · · · · · · · · ·		Sou	thbound	d	· · · · · · · · · · · · · · · · · · ·
Movement	7	8 .	9	1	10	11	12	
	L	T	R	I	L	T	R	•
Volume	98		5					
Peak Hour Factor, PHF	1.00	•	1.00					•
Hourly Flow Rate, HFR	98		5					•
Percent Heavy Vehicles	.0		0					*
Percent Grade (%)		0		•		0		
Flared Approach: Exists	?/Storage		No	1				/
Lanes	Ō	0						•
Configuration	•	LR						

Delay, Queue Length, and Level of Service

7 . 8

LR

WB

4

LT

5 752

0.01

0.02

9.8

	103				
	391	•			
	0.26				
	1.04		•		•
	17.5		•	*	
	C				
	17.5				
	C				
•					

| 10

11

12

Northbound Southbound

9

HCS2000: Unsignalized Intersections Release 4.1d

TWO-WAY STOP CONTROL SUMMARY

Analyst: bh

Agency/Co.: Darnell
Date Performed: 11/16/2005

Analysis Time Period: PM

Intersection: SR-76/Project Access

Jurisdiction: County SD

Units: U. S. Customary

Analysis Year: 2030+PROJECT Project ID: 051008 Gregory Cyn East/West Street: SR-76

North/South Street: Project Access

Intersection Orientation: EW

Study period (hrs): 0.25

	Vehi	cle Volu	mes and	Adjus	tme	nts			
Major Street:	Approach	Eas	stbound			Wes	tbound		.,
	Movement	1	2	3	1	4	5	. 6	
		L	T	R ·	Ì	L	${f T}$	R	
Volume			915	116		5	1073		
Peak-Hour Fact	or, PHF	•	1.00	1.00		1.00	1.00		
Hourly Flow Ra	te, HFR		915	116		· 5	1073		
Percent Heavy						0		P-7 M-1	
Median Type/St		TWLTL				/ 5			
RT Channelized									
Lanes			1 0			. 0	1 ·		
Configuration			TR			$_{ m L}$?		
Upstream Signa	1?		No				No		•
	•								•
Minor Street:	Approach	Noi	thbound			Soi	thbound	i	· · · · · · · · · · · · · · · · · · ·
•	Movement	7	8	9 .	1	10	11	12	
		L	T	R	Í	L	T	R	
	·								
Volume		116		6					
Peak Hour Fact	or, PHF	1.00		1.00					
Hourly Flow Ra	te, HFR	116		6					
Percent Heavy	Vehicles	.0		0		•	•		
Percent Grade	(용)		0				0		
Flared Approac	h: Exists?/	Storage		No	1	1			/
Lanes		ó	0						
Configuration			LR		•				

Approach	_Delay, EB	•	and Level of orthbound	Service Southbound
Movement	1	4 7	8 9	10 11 12
Lane Config		LT	LR	
v (vph)		5 .	122	
C(m) (vph)		682	290	
v/c		0.01	0.42	·
95% queue length		0.02	1.99	
Control Delay	•	10.3	26.1	·
LOS	•	B _.	D	•
Approach Delay			26.1	
Approach LOS			D	

Analyst: bh Agency/Co.: Darnell Date performed: 11/17/2005 Analysis time period: AM Peak Freeway/Dir of Travel: I-15 Northbound On-Ramp Junction: I-15 North/State Route 76 Jurisdiction: County SD/Caltrans Analysis Year: 2030 - With Project Description: 051008 - Gregory Canyon _Freeway Data Type of analysis Merge Number of lanes in freeway 4. Free-flow speed on freeway 70.0 mph Volume on freeway 4600 vph On Ramp Data Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 35.0 mph Volume on ramp 776 vph Length of first accel/decel lane 500 ft Length of second accel/decel lane ft _Adjacent Ramp Data (if one exists) Does adjacent ramp exist? No Volume on adjacent Ramp vph Position of adjacent Ramp Type of adjacent Ramp Distance to adjacent Ramp Conversion to pc/h Under Base Conditions Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 4600 776 vph Peak-hour factor, PHF 0.90 0:90 Peak 15-min volume, v15 1278 216 v Trucks and buses 10 10 . 용 Recreational vehicles 2 2 Terrain type: Level Level Grade Length mi mi Trucks and buses PCE, ET 1.5 1.5 Recreational vehicle PCE, ER 1.2 1.2 Heavy vehicle adjustment, fHV 0.949 0.949 Driver population factor, fP 1.00 1.00 Flow rate, vp 5387 909 pcph Estimation of V12 Merge Areas L = (Equation 25-2 or 25-3) ΕQ 0.263 Using Equation 4 FM v = v (P) = 1419 pc/h F FM 12 Capacity Checks Actual Maximum LOS F? v 6296 9600 FO 2328 4600 No R12 Level of Service Determination (if not F) Density, D = 5.475 + 0.00734 v + 0.0078 v-0.00627 L =20.1 pc/mi/ln 12 R

Level of service for ramp-freeway junction areas of influence C

bh Analyst: Darnell Agency/Co.: 11/17/2005 Date performed: Analysis time period: PM Peak Freeway/Dir of Travel: I-15 Northbound On-Ramp Junction: I-15 North/State Route 76 County SD/Caltrans Jurisdiction: 2030 - With Project Analysis Year: Description: 051008 - Gregory Canyon Freeway Data Type of analysis Merge Number of lanes in freeway 4 70.0 mph Free-flow speed on freeway Volume on freeway 4600 .vph On Ramp Data Side of freeway Right Number of lanes in ramp Free-flow speed on ramp 35.0 mphVolume on ramp 1316 vph Length of first accel/decel lane ft 500 Length of second accel/decel lane ft Adjacent Ramp Data (if one exists) Does adjacent ramp exist? No Volume on adjacent Ramp vph Position of adjacent Ramp Type of adjacent Ramp Distance to adjacent Ramp ft Conversion to pc/h Under Base Conditions Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 4600 1316 vph Peak-hour factor, PHF 0.90 0..90 Peak 15-min volume, v15 1278 366 10 10 Trucks and buses 2 2 Recreational vehicles Terrain type: Level Level Grade mi Length mi 1.5 1.5 Trucks and buses PCE, ET Recreational vehicle PCE, ER 1.2 1.2 Heavy vehicle adjustment, fHV 0.949 0.949 Driver population factor, fP 1.00 1.00 Flow rate, vp 5387 pcph Estimation of V12 Merge Areas L = (Equation 25-2 or 25-3) EQ 0.184 Using Equation 4 FM (P pc/h) 994 12 F FM Capacity Checks Actual LOS F? 6928 9600 No V FO 2535 4600 ·No R12 Level of Service Determination (if not F) Density, D = 5.475 + 0.00734 \forall + 0.0078 v 21.4 pc/mi/ln - 0.00627 L 12 Level of service for ramp-freeway junction areas of influence C

Darnell Agency/Co.: 11/17/2005 Date performed: Analysis time period: AM Peak Freeway/Dir of Travel: I-15 Southbound On-Ramp I-15 South/State Route 76 Junction: County SD/Caltrans Jurisdiction: 2030 - With Project Analysis Year: Description: 051008 - Gregory Canyon Freeway Data Type of analysis Merge Number of lanes in freeway 70.0 Free-flow speed on freeway mph Volume on freeway 4500 vph On Ramp Data Side of freeway Right Number of lanes in ramp Free-flow speed on ramp 35.0 mph 1000 vph Volume on ramp Length of first accel/decel lane 500 ft Length of second accel/decel lane ft Adjacent Ramp Data (if one exists) Does adjacent ramp exist? No Volume on adjacent Ramp vph Position of adjacent Ramp Type of adjacent Ramp Distance to adjacent Ramp ft _Conversion to pc/h Under Base Conditions Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 4500 1000 vph Peak-hour factor, PHF 0.90 0.90 Peak 15-min volume, v15 1250 278 Trucks and buses 10 10 왐 Recreational vehicles 2 2 Terrain type: Level Level Grade £ mi. Length mimi 1.5 Trucks and buses PCE, ET 1.5 Recreational vehicle PCE, ER 1.2 1.2 Heavy vehicle adjustment, fHV 0.949 0.949 Driver population factor, fP 1.00 1.00 5270 1171 pcph Flow rate, vp Estimation of V12 Merge Areas L (Equation 25-2 or 25-3) EQ 0.231 P Using Equation 4 FM == v (P) = 1216 12 F FM Capacity Checks Actual Maximum LOS F? 6441 9600 No FO 2387 4600 No R12 Level of Service Determination (if not F) Density, D = 5.475 + 0.00734 v + 0.0078 ♥ 0.00627 L 20.4 pc/mi/ln

R

Level of service for ramp-freeway junction areas of influence C

12

Analyst:

bh

Analyst: bh Agency/Co.: Darnell Date performed: 11/17/2005 Analysis time period: PM Peak Freeway/Dir of Travel: I-15 Southbound On-Ramp I-15 South/State Route 76 Junction: County SD/Caltrans Jurisdiction: 2030 - With Project Analysis Year: Description: 051008 - Gregory Canyon Freeway Data Type of analysis Merge Number of lanes in freeway 4 70.0 Free-flow speed on freeway mphVolume on freeway 4500 vph On Ramp Data Side of freeway Right Number of lanes in ramp Free-flow speed on ramp 35.0 mph 997 vph Volume on ramp Length of first accel/decel lane 500 ft. Length of second accel/decel lane ft Adjacent Ramp Data (if one exists) Does adjacent ramp exist? No Volume on adjacent Ramp ⊽ph Position of adjacent Ramp Type of adjacent Ramp Distance to adjacent Ramp ft _Conversion to pc/h Under Base Conditions Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 4500 997 abp Peak-hour factor, PHF 0.90 0.90 Peak 15-min volume, v15 1250 277 10 Trucks and buses 10 Recreational vehicles 2 2 Terrain type: Level Level Grade Length mi mi mi Trucks and buses PCE, ET 1.5 1.5 Recreational vehicle PCE, ER 1.2 1.2 Heavy vehicle adjustment, fHV 0.949 0.949 Driver population factor, fP 1.00 1.00 Flow rate, vp 5270 1168 pcph Estimation of V12 Merge Areas (Equation 25-2 or 25-3) ΕQ 0.231 Using Equation 4 FΜ (P) 1218 pc/h FM 12 Capacity Checks Actual Maximum LOS F? 9600 v 6438 No FO 2386 4600 No R12 Level of Service Determination (if not F)

+ 0.0078 ♥.

12

R

Level of service for ramp-freeway junction areas of influence C

Density, $D = 5.475 + 0.00734 \forall$

- 0.00627 L

pc/mi/ln

20.4

Analyst: bh Agency/Co.: Darnell Date performed: 11/17/2005 Analysis time period: AMFreeway/Dir of Travel: I-15 Northbound Off Junction: I-15 North Off/State Route 76 Jurisdiction: County SD/Caltrans Analysis Year: Description: 051008 - Gregory Canyon Freeway Data Type of analysis Diverge Number of lanes in freeway Free-flow speed on freeway 70.0 mph Volume on freeway 4600 vph Off Ramp Data Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 35.0 mph Volume on ramp 926 vph Length of first accel/decel lane 500 £t Length of second accel/decel lane £t _Adjacent Ramp Data (if one exists) Does adjacent ramp exist? No Volume on adjacent ramp vph Position of adjacent ramp Type of adjacent ramp Distance to adjacent ramp ft _Conversion to pc/h Under Base Conditions Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 4600 926 vph Peak-hour factor, PHF 0.90 0.90 Peak 15-min volume, v15 1278 257 Trucks and buses 10 10 용 Recreational vehicles 0 0 Terrain type: Level Level Grade 0.00 0.00 Length 0.00 0.00 \mathtt{mi} mi Trucks and buses PCE, ET 1.5 1.5 Recreational vehicle PCE, ER 1.2 1.2 Heavy vehicle adjustment, fHV 0.952 0.952 Driver population factor, fP 1.00 1.00 Flow rate, vp 5367 1080 pcph Estimation of V12 Diverge Areas L = (Equation 25-8 or 25-9) EQ P 0.436 Using Equation 8 FD + (v - v)P = 294912 R F R FD _Capacity Checks Actual Maximum LOS F? 5367 9600 No 2949 4400 No 12 4287 9600 No FO F 1080 2000 No R Level of Service Determination (if not F)

R 12 D
Level of service for ramp-freeway junction areas of influence C

D = 4.252 + 0.0086 v - 0.009

pc/mi/ln

Diverge Analysis bh Analyst: Darnell Agency/Co.: 11/17/2005 Date performed: Analysis time period: PM I-15 Northbound Off Freeway/Dir of Travel: I-15 North Off/State Route 76 Junction: County SD/Caltrans Jurisdiction: 2030 - With Project Analysis Year: Description: 051008 - Gregory Canyon _Freeway .Data Diverge Type of analysis 4 Number of lanes in freeway 70.0 Free-flow speed on freeway mph Volume on freeway 4600 vph Off Ramp Data Right Side of freeway Number of lanes in ramp 1 35.0 Free-Flow speed on ramp mph 1407 wph Volume on ramp Length of first accel/decel lane 500 Length of second accel/decel lane ft _Adjacent Ramp Data (if one exists) Does adjacent ramp exist? Volume on adjacent ramp vph Position of adjacent ramp Type of adjacent ramp £t Distance to adjacent ramp Conversion to pc/h Under Base Conditions Ramp Junction Components Freeway 1407 4600 Volume, V (vph) Peak-hour factor, PHF 0.90 0.90 1278 391 Peak 15-min volume, v15 . 10 10 Trucks and buses 0 0 Recreational vehicles Level Terrain type: Level Grade 0.00 0.00 Length 0.00 0.00 Trucks and buses PCE, ET. 1.5 1.5 1.2 1.2 Recreational vehicle PCE, ER 0.952 0.952 Heavy vehicle adjustment, fHV Driver population factor, fP 1.00 1.00 Flow rate, vp 5367 1642. Estimation of V12 Diverge Areas

L = (Equation 25-8 or 25-9) EQ P = 0.436 Using Equation 8 FD v = v + (v - v) P = 3266 pc/h 12 R F R FD

__Capacity Checks

v = v	Actual 5367	Maximum 9600 .	LOS F? No
Fi F v 12	3266	4400	No
v ≈ v ~ v FO F R	3725	9600	No
v R	1642	2000	No

Level of Service Determination (if not F)_____

Density, D = 4.252 + 0.0086 v - 0.009 L = 27.8 pc/mi/ln R 12 D

Level of service for ramp-freeway junction areas of influence C

Adjacent

vph

ν

윰

mi

pcph

Ramp

Date performed: 11/17/2005 Analysis time period: ΑM Freeway/Dir of Travel: I-15 Southbound Off I-15 South Off/State Route 76 Junction: Jurisdiction: County SD/Caltrans 2030 - With Project Analysis Year: Description: 051008 - Gregory Canyon Freeway Data Type of analysis Diverge Number of lanes in freeway Free-flow speed on freeway 70.0 mph Volume on freeway 4600 vph Off Ramp Data Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 35.0 mph Volume on ramp 1087 vph Length of first accel/decel lane 500 ft Length of second accel/decel lane ft Adjacent Ramp Data (if one exists) Does adjacent ramp exist? No Volume on adjacent ramp vph Position of adjacent ramp Type of adjacent ramp Distance to adjacent ramp ft Conversion to pc/h Under Base Conditions Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 4600 1087 vph Peak-hour factor, PHF 0.90 0.90 Peak 15-min volume, v15 1278 302 Trucks and buses 10 . 10 Recreational vehicles 0 0 Terrain type: Level Level Grade 0.00 0.00 Length 0.00. mi 0.00 mi Trucks and buses PCE, ET 1.5 1.5 Recreational vehicle PCE, ER 1.2 1.2 Heavy vehicle adjustment, fHV 0.952 0.952 Driver population factor, fP 1.00 1.00 Flow rate, vp 5367 1268 pcph Estimation of V12 Diverge Areas (Equation 25-8 or 25-9) EQ 0.436 Using Equation 8 P FD (v - v) P = 3055R Capacity Checks Actual Maximum LOS F? 5367 9600 . No 3055 4400 No 12 4099 9600 No FO R 1268 2000 No Level of Service Determination (if not F) D = 4.252 + 0.0086 v - 0.009 LDensity, 26.0 pc/mi/ln 12 Level of service for ramp-freeway junction areas of influence C

Analyst:

Agency/Co.:

bh

Darnell

Analyst: bh Darnell Agency/Co.: 11/17/2005 Date performed: Analysis time period: PM Freeway/Dir of Travel: I-15 Southbound Off I-15 South Off/State Route 76 Junction: County SD/Caltrans Jurisdiction: 2030 - With Project Analysis Year: Description: 051008 - Gregory Canyon _Freeway Data Type of analysis Diverge Number of lanes in freeway 70.0 Free-flow speed on freeway mph 4600 Volume on freeway vph Off Ramp Data Right Side of freeway Number of lanes in ramp 35.0 Free-Flow speed on ramp mph 1054 vph. Volume on ramp Length of first accel/decel lane 500 ft Length of second accel/decel lane ft Adjacent Ramp Data (if one exists) No Does adjacent ramp exist? Volume on adjacent ramp vph Position of adjacent ramp Type of adjacent ramp £t Distance to adjacent ramp Conversion to pc/h Under Base Conditions Adjacent Freeway Ramp Junction Components Ramp 4600 1054 vph Volume, V (vph) 0.90 Peak-hour factor, PHF 0.90 1278 293 Peak 15-min volume, v15 10 10 S. Trucks and buses Recreational vehicles Level Level Terrain type: 0.00 Grade 0.00 mi Length 0.00 mi 0.00 mi 1.5 1.5 Trucks and buses PCE, ET Recreational vehicle PCE, ER 1.2 1,2 0.952 0.952 Heavy vehicle adjustment, fHV 1..00 1.00 Driver population factor, fP Flow rate, vp 5367 1230 pcph Estimation of V12 Diverge Areas (Equation 25-8 or 25-9) L EQ 0.436 Using Equation 8 FD -v)P = 3034 pc/hF R FD 12 R _Capacity Checks LOS F? Actual Maximum 5367 9600 No 3034 4400 No 12 9600 4137 No 1230 2000 No R Level of Service Determination (if not F) pc/mi/ln D = 4.252 + 0.0086 v~ 0.009 L 25.8

12

Level of service for ramp-freeway junction areas of influence C

APPENDIX J Maranatha School Excerpts Traffic Signal Warrants

	•		
to a contract the contract of			
	•		
		·	
		•	

Darnell & ASSOCIATES, INC.

051008AA.dwg 5-09-06

FIGURE 1 PROJECT LOCATION

Darnell & ASSOCIATES, INC.

051008AA.dwg 5-09-06

SN

FIGURE 2
BUILDOUT TRAFFIC WITHOUT & WITH PROJECT

» Maranatha School and Church Impact Study

05/008

Maranatha School and Church Traffic Impact Study

July 6, 2001

Prepared By:

2251 San Diego Avenue, Suite B-110 San Diego, California 92110 619.683.2933 Fax 619.683.7982

In Association with:

Harper Construction 2241 Kettner Boulevard Suite 300 San Diego, CA 92101

Prepared for:

Maranatha Chapel 10752 Coastwood Road San Diego, CA 92127

San Diego County
DEPT, OF PLANNING & LAND USE
REPLACEMENT

TY

Table 11 Summary of Buildout Intersection Performance

Without and With Project
(Bold Type Indicates a Significant Project Impact that Requires Mitigation)

Intersection	Without Project			With Project			
	Average Intersection Delay (sec.)	Level of Service	Average Intersection	Level of Service	Increase in Delay	Signifi- cant?	
Weekday AM Peak Hour	1	·	Delay (sec.)	<u> </u>			
Rancho Bernardo Rd at I-15 NB Rancho Bernardo Rd at I-15 SB Rancho Bernardo Rd at West Bernardo Dr	16.3 23.9 34.5	B C C	16.4 24.4 34.7	B C C	0.01 0.05 0.02	N N N	
Rancho Bernardo Rd at Via del Campo	32.7	С	33,6	Ç	0.90	'n	
Rancho Bernardo Rd at Camino San Bernardo	28.7	C	28.9	·c	0.02	.N	
Camino del Norte at I-15 NB Camino del Norte at I-15 SB Camino del Norte at Bernardo Center Dr	33.6 40.2 33.9	C D C	39.1 43.8 35.0	D D	5.50 3.6 1.1	Y Y N	
Camino del Norte WB at Camino San Bernardo	18.6	В	19.1	В	0.5	N	
Camino del Norte EB at Camino San Bernardo	23,2	C	23.2	Ç.	0.0	N	
Camino del Norte at Rancho Bernardo Road	29,1	C	32.6	D	3.5	Υ	
Camino del Norte at Four Gee Road/C Street	31.6	C	35.4	D	3.8	Υ	
Camino del Norte at Street B Camino Ruiz at Street A Camino del Norte at Project Driveway	16.5 10.0 5.3	В В А.	15.5 13.8 40.3	B B D	-1.0 3.8 35.0	, Z Z Z ,	
Camino del Norte at East Loop Road Camino del Norte at West Loop Road	18.2 16.1	·B B	21.3 15.2	. C B	3.1 09	ZZ	
Camino Ruiz at North Village Drive Camino Ruiz at San Dieguito Road Note: Buildout volumes were taken f	26.3 14.6	C B	24.9 14.4	C B	-1.4 -0.2	N N	

Note: Buildout volumes were taken from the Black Mountain Ranch Subarea 1 Plan, 1998.

Where more vehicles are added to a movement with a lower delay (e.g. turn movements), the overall sum results in a lower average delay.

Table 11 continued Summary of Buildout Intersection Performance Without and With Project (Bold Type Indicates a Significant Project Impact that Requires Mitigation)

Intersection	Without Project		With Project			
Wester	Average Intersection Delay (sec.)	Level of Service	Average Intersection Delay (sec.)	Level of Service	Increase in Delay	Signifi- cant?
Weekday AM Peak Hour) Dody (soc)		L	
Rancho Bernardo Rd at I-15 NB	78.2	Ę	77.9			
Rancho Bernardo Rd at I-15 SB	29.9	č		Ε	-0.3	Y
Rancho Bernardo Rd at West	41.1	D	29,5	Ç	-0.4	-N
Bernardo Dr	7111	D	41.0	Ď	-0.1	. N
Rancho Bernardo Rd at Via del	26.6	_		•		
Campo ·	20.0	C	26.5	Ç	-0.01	. N
Rancho Bernardo Rd at Camino San	20.6					
Bernardo	29.8	¢	29.7	C	-0.01	Ν
Camino del Norte at 1-15 NB				`		• • • • • • • • • • • • • • • • • • • •
Camino del Norte at I-15 SB	40.9	D	37. 9	· Б.	-3.0	N٠
Camino del Norto el Die	34.1	С	32.8	Ç.	-1.3	
Camino del Norte at Bernardo Center Dr	. 40,8	D	39.6	Ď	-1.2	Ŋ
	•			<i>D</i>	-1.2	Ν
Camino del Norte WB at Camino San Bernardo	15.6	В.	. 15.4	В	0.0	
Coming del No.		-	. 10.4	Δ.	-0,2	N
Camino del Norte EB at Camino San	25.0	С	24.9	•		
Demargo		Ü	۲4.5	Ç	-0.1	Ν
Camino del Norte at Rancho	40.0	D	40.0	_		
Bernardo.Road	1414	<i>D</i> .	40,2	D	0.2	Ν
Camino del Norte at Four Gee Road	66.7)				
/C Street	00.7	E	60.1	Ę.	-6.6	Ν.
Camino del Norte at Street B	40.5					
Camino Ruiz at Street A	18.5	₿	19.1	В	0.6	N
Camino del Norte at Project Driveway	17.7	B	18.3	В	0,6	N
amino del Nodo et Boet unveway	13.6	В	2.2	Ā	-11.4	
amino del Norte at East Loop Road	18.3	В	17.2	B	-1. 1	N
Camino del Norte at West Loop Road	14.2	В.	14.4	В		N
Camino Ruiz at North Village Drive	36 <i>.</i> 7	, D	36.3	. Ď	0.2	N
amino Ruiz at San Dieguito Road	474			ָ עַ	`-0.4	N
Note: Buildout volumes were taken from	m the Black M	Ountain D-	11.0	<u>, D</u>	0.0	N

Note: Buildout volumes were taken from the Black Mountain Ranch Subarea 1 Plan, 1998. Where more vehicles are added to a movement with a lower delay (e.g. turn movements), the overall sum results in a lower average delay.

Figure 4C-3. Warrant 3, Peak Hour

807

Table 4C-101. Traffic Signal Warrants Worksheet (Average Traffic Estimate Form)

(Based on Estimated Average Daily Traffic - See Note)

URBANRURAL	Minimum Requirements EADT			
Satisfied 802 Not Satisfied	Vehicles Per Day on Major Street (Total of Both Approaches)	(One Direction Only)		
Number of lanes for moving traffic on each approach				
Major Street Minor Street	Urban 2300 Rural	Urban 2085 Rural		
2 or Mare 1 2 or More 2 or More 2 or More 2 or More	8,000 5,600 9,600 6,720 9,600 6,720 8,000 5,600	2,400 1,680 2,400 1,680 3,200 2,240 3,200 2,240		
1B - Interruption of Continuos Traffic				
Satisfied Not Satisfied	Vehicles Per Day on Major Street (Total of Both Approaches)	Vehicles Per Day on Higher-Volume Minor Street Approach (One Direction Only)		
Number of lanes for moving traffic on each approach	23,000	2085		
Major Street Minor Street	Urban Rural	Urban Rural		
Major Street 1	12,000 8,400 14,400 10,080 14,400 10,080 12,000 8,400	1,200 850 1,200 850 1,600 1,120 1,600 1,120		
1A&B - Combinations				
No one warrant satisfied, but following warrants fulfilled 80% or more	2 Warrants	2 Warrants		

Note: To be used only for NEW INTERSECTIONS or other locations where it is not reasonable to count actual traffic volumes.

SR7L (PROJECT ACCESS)
NEALTERM CHMULATIVE

JÉ

APPENDIX K Signing & Striping Plan

GENERAL NOTES

- SIGNING, STRIPHIC AND PAYEMENT MARRINGS SHALL CONFORM TO THE LATEST CALTRAMS TRAFFIC MANUAL, CALTRAMS STANDARD SPECIFICATIONS (CATED MAY 1982). THESE PLANS, AND THE STANDARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION.
- 3. ALL SIGNING AND STRIPPING IS SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE PRIOR TO INSTALLATION.
- ALL SIONS AND STRAPHING SHALL BE REFLECTIVE PER CALTRANS SPECIFICATIONS. STRAPHING SHALL BE REPAINTED TWO WEEKS AFTER NATIAL PAINTING. SCHING SHALL USE 3M HIGH INTENSITY SHEETING OR EQUAL.
- 5. EXACT LOCATION OF STRIPTING AND LIMIT LINES SHALL BE APPROVED BY OWNER'S REPRESENTATIVE PRIOR TO INSTALLATION.
- 6. CONTRACTOR SHALL REMOVE ALL CONFLICTING PAINTED LINES, MARKINGS, AND PANELIENT LEGENDS BY SANDRUASTING. DEBRIS SHALL BE PROMPTLY REMOVED BY CONTRACTOR.
- 7. ALL PAVEMENT LEGENDS SHALL BE CALTRANS STENCES
- B. ALL SIGNS SHALL BE STANDARD SIZE SHOWN IN CALTRANS TRAFFIC MANUAL UNILESS OTHERWISE NOTED:
- FIRE HYDRANT PAVEMENT MARKERS SHALL CONFORM TO THE LATEST CALTRANS TRAFFIC MANUAL AND SAN DIEGO REGIONAL STANDARD DRAWING M-19.
- 10. EXISTING SIGNS REMOVED BY THE CONTRACTOR SHALL BE DISPOSED OF AS DIRECTED BY THE OWNER'S REPRESENTATIVE.
- 11. ALL SIGNS SHOWN ON THESE PLANS SHALL BE NEW SIGNS PROVIDED AND INSTALLED BY THE CONTRACTOR.
- 12. ALL EXISTING SIGNS TO REMAIN UNLESS SHOWN OTHERWISE.
- 13. LAME WIDTHS INDICATED ARE THE MARKIUM WIDTHS AT LOCATIONS INDICATED.
 MEASURED FROM CENTER TO CENTER OF STRIPPING CONFIGURATION.

STRIPING LEGEND

- 1) NO PASSING ZONE-2 DIRECTIONS PER CALTRANS A20A, DETAIL 22
- (2) MEDIAN ISLAND PER CALTRANS A208, DETAIL 29
- 3) RIGHT EDGELINE PER CALTRANS A208, DETAIL 278
- 4) CHANNELIZING LINE PER CALTRANS A200, DETAIL 38
- (3) LANE DROP AT INTERSECTION PER CALTRANS A2OC, DETAIL 378
- 6) TYPE 1 (7.32 m) ARROW PER CALTRANS A24A

- (8) TIPE V (7.32 m) ANKOW PER CALIFANIS A24A
 (7) TIPE VI (L) ARROW PER CALIFANIS A24A
 (8) TIPE IV (R) ARROW PER CALIFANIS A24A
 (9) TIPE IV (R) ARROW PER CALIFANIS A24A
 (10) CROSSWALK AND LIMIT LINE PER CALIFANIS A24E

SIGNAGE LEGEND

STOP SIGN

R26(S) NO STOPPING ANYTIME SIGN

R63 DO NOT PASS SIGN

SIDE ROAD SIGN PAVEMENT WIDTH TRANSITION SIGN

TWO-WAY TRAFFIC SIGN

GRAPHIC SCALE

DATE: 03/15/05 TIME: 1:33 p.m. SERVER: SDS1 SERVICE: SDS1 PATH: N: sd0030\Cadd\Highway 76\IP\ DRAWING NAME: 76/P07.DWG PLOTTING MEW DESIGNER: RST_PROJ. MGR: JRH CAUTION: The engineer preparing these picns will not be responsible for, or liable for, unauthorized changes to or uses of the plans. All changes to the plans must be in writing and must be approved by the preparer of these plans.

HIGHWAY 76 IMPROVEMENTS

SIGNING AND STRIPING

STA. 10+00 TO STA. 27+00 P.M. 20.6

DATE SUBMITTED: